
stratEst: Strategy Estimation in R

Fabian Dvorak
Universität Konstanz

Abstract

stratEst is a software package for the estimation of finite mixture models of discrete
choice strategies in the statistical computing environment R. Discrete choice strategies are
represented as deterministic finite state automata which can be customized by the user
to fit the structure of the data. The parameters of the basic strategy estimation model
are the relative frequencies and the choice probabilities of the strategies. The model can
be extended by adding individual level covariates to explain the selection of strategies
by individuals. The estimation function of the package uses expectation maximization
and Newton-Raphson methods to find the maximum likelihood estimates of the model
parameters. The package contains additional functions for data processing and simulation,
strategy generation, parameter tests, model checking, and model selection.

Keywords: decision experiments, discrete choice strategies, mixture models, R.

1. Introduction
stratEst is a software package for strategy estimation in the statistical computing environment
R (R Development Core Team, 2008). The goal of strategy estimation is to explain discrete
choices of a sample of individuals by a finite mixture of individual choice strategies. Strategy
estimation is a form of mixture modeling (McLachlan and Peel 2005), and similar to cluster
analysis (Kaufman and Rousseeuw 1990), and latent class analysis (Lazarsfeld 1950). All
methods essentially assign observed entities to unobservable classes. In strategy estimation,
the entities are individuals observed in a specific choice environment and the unobservable
classes are discrete choice strategies.
The stratEst package provides a general framework for strategy estimation in R. In principle,
the package can be used to fit strategy estimation models to any data set with discrete
choices. The main challenge for the generality of the strategy estimation framework is that the
candidate strategies must correspond to the choice environment. Strategies that are plausible
candidates in one choice environment are often meaningless in other choice environments.
The solution implemented by the package is that candidate strategies are represented as
deterministic finite state automata that can be customized by the user. The advantage of
the representation as deterministic finite state automata is a reduction of complexity that
facilitates the programming of strategies. In the automaton representation, the choice prob-
abilities over the alternatives are a function of a finite set internal states of the automaton
and not a function of the larger set of situations that might be encountered by the individual
in the choice environment. On the other hand, the concept of finite state automata is flexible
enough to represent candidate strategies of many different choice environments.

2 Strategy Estimation in R

Strategy estimation was introduced by Dal Bó and Fréchette (2011) to estimate the maximum
likelihood frequencies of a set of candidate strategies in the repeated prisoner’s dilemma. Since
the original publication, strategy estimation was used in several other studies that, almost
exclusively, focus on the repeated prisoner’s dilemma (e.g. Aoyagi, Bhaskar, and Frechette
2019; Arechar, Dreber, Fudenberg, and Rand 2017; Camera, Casari, and Bigoni 2012; Embrey,
Frechette, and Yuksel 2017; Fudenberg, Rand, and Dreber 2012; Frechette and Yuksel 2017).
Embrey, Frechette, and Stacchetti (2013) shift the scope of strategy estimation beyond the
prisoner’s dilemma. The authors perform strategy estimation in a repeated partnership game
with more than two choices. Breitmoser (2015) extends the strategy estimation model of
Dal Bó and Fréchette (2011) by adding model parameters for the choice probabilities of the
strategies. Dvorak and Fehrler (2018) extend the strategy estimation model further by adding
individual level covariates to explain the selection of strategies by individuals.
The parameters of the basic strategy estimation model are the relative frequencies and the
choice parameters of the strategies. In the model extension with individual level covariates,
the parameters for the relative frequencies of the strategies are replaced by logit coefficients
for the effects of the covariates. The estimation function of the package obtains maximum
likelihood estimates for the model parameters based on expectation maximization (Dempster,
Laird, and Rubin 1977) and Newton-Raphson algorithms.
To speed up the estimation, the package integrates C++ and R with the help of the R packages
Rcpp (Eddelbuettel and François 2011) and the open source linear algebra library for the C++
language RppArmadillo (Sanderson and Curtin 2016). Package development is supported
by the packages devtools (Wickham, Hester, and Chang 2020b), testthat (Wickham 2011),
roxygen2 (Wickham, Danenberg, Csardi, and Eugster 2020a), and Sweave (Leisch 2002).
Strategy estimation can also be conducted based on R packages for cluster and latent class
analysis like Flexmix (Leisch 2004), poLCA (Linzer and Lewis 2011), and randomLCA (Beath
2011). A potential drawback of using these packages for strategy estimation is that the
candidate strategies must have the same structure i.e., the same set of internal states and
deterministic state transitions. This often implies that a reasonable set of candidate strategies
cannot be constructed for the data at hand.
Throughout the paper, text in typewriter font represents R code. The symbol R> at the
beginning of a new line marks the beginning of a command that should be executed in the R
console.

Installation

The most recent CRAN version of stratEst is installed by executing the following command
in the R console:

R> install.packages("stratEst")

After the installation, the package is loaded into memory and attached to the search path
with the command:

R> library(stratEst)

Fabian Dvorak 3

Rock-paper-scissors: An introductory example
I illustrate the core features of the package on the basis of the game rock-paper-scissors. In
each period of this game, two players simultaneously choose one of three possible actions:
rock, paper or scissors. The winner of the period is determined by the following rule: rock
crushes scissors, scissors cuts paper, and paper covers rock. If both players choose the same
action, this results in a tie. Rock-paper-scissors has a Nash equilibrium. The Nash equilibrium
suggest that every player uses the same strategy. This strategy plays each of the three actions
with probability one-third.
The data set WXZ2015 contains the data of a rock-paper-scissors experiment conducted by
Wang, Xu, and Zhou (2014). The data contains the observations 72 university students
playing 300 periods of the rock-paper-scissors game in groups of six. In each period, each
participant of the experiment is randomly matched with another participant from the same
group. In the experiment, 35.7 percent of all actions are rock (r), 32.2 percent are paper (p),
and 32.1 percent are scissors (s). This distribution of choices is fairly inline with the Nash
equilibrium prediction.
However, there are many other strategies that can explain the observed distribution of choices.
Wang et al. (2014) show that a conditional response strategy provides a better explanation
for the data. The conditional response strategy is more complex than Nash play as it takes
the outcome of the previous period into account for the choice in current period.
The observed distribution of choices can also be explained by a finite mixture model of several
strategies. For example, by uniform mixture of three types of players, one who always plays
rock, one who always plays paper, and one who always plays scissors.
This example shows how to fit and compare different strategy estimation models to the data
of the rock-paper-scissors experiment. Note that the different strategy estimation models are
selected to illustrate the features of the package and lack the theoretical justification of the
conditional response strategy of (Wang et al. 2014).

Programming strategies
The strategy generation function of the package is stratEst.strategy(). The following
code creates two strategies: a mixed strategy with unspecified choice probabilities, and the
Nash strategy.

R> rps = c("r", "p", "s")
R> mixed = stratEst.strategy(choices = rps)
R> nash = stratEst.strategy(choices = rps, prob.choices = rep(1/3, 3))

The argument choices expects a character vector with the names of the choices. The argu-
ment prob.choice can be used to define the choice probabilities of the strategy. If printed
out in the console, the strategies look like this:

R> print(mixed)

prob.r prob.p prob.s
1 NA NA NA

R> print(nash)

4 Strategy Estimation in R

prob.r prob.p prob.s
1 0.333 0.333 0.333

The objects mixed and nash returned by the strategy function are data frames of class
stratEst.strategy. Since the choice probabilities of the mixed strategy were not spec-
ified, the choice probabilities are NA. This indicates to the estimation function that these
parameters should be estimated from the data.
The strategies nash and mixed are simple strategies in the sense that the choice probabilities
of these strategies do not change from one situation to the next. The strategies only have one
internal state and one associated set of choice probabilities. More complex strategies have
several states with different sets of choice probabilities. The complex strategies transition from
one state to the other after some input is observed. The input may be a specific situation or
history of events in the game.
To give an example of a more complex strategy, I generate a strategy that randomizes in the
first period and subsequently imitates the choice in the previous period. The following code
generates the strategy imitate:

R> last.choice = c(NA, rps)
R> imitate = stratEst.strategy(choices = rps, inputs = last.choice,
+ num.states = 4,
+ prob.choices = c(rep(1/3, 3), 1, 0, 0,
+ 0, 1, 0, 0, 0, 1),
+ tr.inputs = rep(c(2, 3, 4), 4))

In the function call I use the argument inputs to define a set of inputs for the strategy.
The object supplied to the argument inputs is a character vector which has one element for
each possible choice in the previuos period. The value NA in the set indicates that the input
can be missing. This is the case in the first period when no information about the previous
period exists. The argument num.states defines the number of states of the strategy. The
argument tr.inputs defines the deterministic state transitions for all possible inputs in all
states. The result is a strategy with four states. Each state is represented by one row of the
object imitate.

R> print(imitate)

prob.r prob.p prob.s tremble tr(r) tr(p) tr(s)
1 0.333 0.333 0.333 NA 2 3 4
2 1.000 0.000 0.000 NA 2 3 4
3 0.000 1.000 0.000 NA 2 3 4
4 0.000 0.000 1.000 NA 2 3 4

The strategy imitate has a column named tr(x) for each possible input x. An exception is
the element NA that indicates the missing input in the first period. The values supplied to
the argument tr.inputs appear in row wise order.
The strategy imitate also contains a column with the name tremble. The values in this
column indicate the probability to choose one of the choices not prescribed by the strategy in

Fabian Dvorak 5

the current state. A tremble probability is usually necessary for a pure strategy with choice
probabilities of zero and one. The purpose of the tremble probability is to avoid that a single
deviation an individual from the choice pattern of the pure strategy results in a likelihood
of zero that the individual uses the strategy. The tremble probability can be specified by
the argument trembles. If the argument is missing, the probability of a tremble is NA. This
signals to the estimation function that the parameter should be estimated from the data.
The strategy imitate transitions from one state to the other by the following deterministic
rule.In the first period, the strategy observes the input NA since there is no information on
the previous choice available. By convention, whenever the input is NA, the strategy moves to
its start state. The start state of the strategy is the state represented by the first row. The
strategy makes a choice according to the choice probabilities in the first row. In period two,
the strategy observes the input (either rock, paper or scissors) and moves to the next state
defined by the value of tr(input) in the current state. The values supplied to tr.inputs
define the desired behavior of the strategy imitate. It randomly makes a choice in the first
period, and subsequently plays rock after rock, paper after paper, and scissors after scissors.

Processing data

In order fit the strategies to the rock-paper-scissors data, the data must be in a suitable
format. The function stratEst.data() can be used to reshape the raw data.

R> data.WXZ2014 <- stratEst.data(data = WXZ2014, choice = "choice",
+ input = c("choice"), input.lag = 1,
+ id = "id", game = "game",
+ period = "period")

To the first argument of the function, we pass a data.frame object with variables in columns.
We need to specify the variable in the data which contains the discrete choices using the
argument choice. The argument input allows us to select one or more variable names which
serve as input for the strategies in the estimation. If we select more than one variable, the
function concatenates the values of these variables to a unique factor level. For this example,
we only need one input variable, the choices of the participants in the experiment. As the
input should reflect the choice in the previous period we specify a lag of one period. The
arguments id, game, and period uniquely identify the participant, and the period within the
game.
The function stratEst.data() returns an data frame object of class stratEst.data. We can
inspect this object by printing it to the console with the command print(data.WXZ2015).

Model estimation

The function has two mandatory arguments which are data and strategies. The object
passed to argument data must be of class stratEst.data. The object passed to argument
strategies must be a list of stratEst.strategy objects. The following code fits four
different models to the rock-paper-scissors data:

R> model.nash <- stratEst.model(data = data.WXZ2014,
+ strategies = list("nash" = nash))

6 Strategy Estimation in R

R> model.mixed <- stratEst.model(data = data.WXZ2014,
+ strategies = list("mixed" = mixed))
R> model.imitate <- stratEst.model(data = data.WXZ2014,
+ strategies = list("imitate" = imitate))
R> model.mixture <- stratEst.model(data = data.WXZ2014,
+ strategies = list("nash" = nash,
+ "imitate" = imitate))

The estimation function stratEst() estimates the model parameters and returns a list
object of class stratEst.model. The elements of this list can be accessed with the syn-
tax model$object where object is an object name in names(model). The generic function
summary() prints a summary of a fitted model to the console.
The function stratEst.check() can be used to inspect the global model fit. It summarizes
the log likelihood of the model, the number of free model parameters, and the values of three
information criteria. The three information criteria are the Akaike information criterion (aic),
the Bayesian information criterion (bic), and Integrated classification likelihood (icl).

R> models <- list(model.nash, model.mixed, model.imitate, model.mixture)
R> compare <- do.call(rbind, unlist(lapply(models, stratEst.check),
+ recursive = F))
R> rownames(compare) <- c("model.nash", "model.mixed", "model.imitate",
+ "model.mixture")
R> print(compare)

loglike free.par aic bic icl
model.nash -23730.03 0 47460.05 47460.05 47460.05
model.mixed -23704.04 2 47412.09 47416.64 47416.64
model.imitate -23205.91 1 46413.82 46416.10 46416.10
model.mixture -22358.43 2 44720.87 44725.42 44728.34

We see that the fit of the model with the mixed strategy is better than the fit of the model
with the Nash strategy. The values of the information criteria indicate that this is true even
if we take into account that the model with the mixed strategy has more free parameters.
The estimated choice probabilities of the mixed strategy can be accessed with the command
model.mixed$probs.par. The estimated choice probabilities reflect the overall distribution
of choices. We can test whether the estimated choice probabilities differ from one-third using
the function stratEst.test(). With the option par = "probs", the function performs a t
test for each estimated choice probability:

R> t.probs <- stratEst.test(model = model.mixed, par = "probs", values = 1/3)
R> print(t.probs)

estimate diff std.error t-value df Pr(>|t|)
probs.par.1 0.3223 -0.0111 0.0014 -8.0838 70 0
probs.par.2 0.3566 0.0232 0.0013 17.6404 70 0
probs.par.3 0.3212 -0.0122 0.0012 -10.3417 70 0

Fabian Dvorak 7

The model with the strategy imitate yields a better fit than the model with the mixed
strategy despite having one free parameter less. However, the best global fit is obtained the
mixture model of nash and imitate. The log likelihood of the mixture model is substantially
larger than the log likelihood of all other models. The following commands print the estimated
shares and strategies of this model the console:

R> print(model.mixture$shares, digits = 2)

nash imitate
share 0.58 0.42

R> print(model.mixture$strategies, digits = 3)

$nash
prob.r prob.p prob.s tr(p) tr(r) tr(s) tremble

1 0.333 0.333 0.333 1 1 1 NA

$imitate
prob.r prob.p prob.s tremble tr(r) tr(p) tr(s)

1 0.333 0.333 0.333 NA 2 3 4
2 1.000 0.000 0.000 0.391 2 3 4
3 0.000 1.000 0.000 0.391 2 3 4
4 0.000 0.000 1.000 0.391 2 3 4

The estimated shares suggest that each strategy is used by approximately half of the par-
ticipants in the experiment. The fitted tremble parameter of the strategy imitate indicates
that a different choice than the one predicted by the strategy is chosen in 39 percent of all
observations. In these observations, the strategy suggests that players randomly pick one of
the other choices.

2. Terminology and model definition
Suppose we observe discrete choices ofN individuals among R choice alternatives. Each choice
occurs after a certain history j ∈ J of observable events. The strategy estimation model
assumes that the discrete choices arise from a finite-mixture of K choice strategies. Each
individual i (i = 1, . . . , N) follows one of the K strategies. Each strategy k (k = 1, . . . ,K)
assigns a strategy specific state sk (sk = 1, . . . , Sk) to history j ∈ J . The subscript k of the
index sk which indicates that the strategies can have different numbers of states is ignored
ignored for better readability. State s determines the probability πksr that strategy k chooses
alternative r after history j.
Let yiksr denote the number of times individual i chooses alternative r after all histories
for which the state of strategy k is s. The total number of choices observed after these
histories is niks =

∑R
r=1 y

i
ksr. The central modeling assumption of the strategy estimation

model is conditional independence (Bandeen-Roche, Miglioretti, Zeger, and Rathouz 1997).
Conditional independence implies that the niks choices are independent conditional on the
strategy of individual i. If individual i uses strategy k, the probability to observe the choice

8 Strategy Estimation in R

vector Y i
ks = (yiks1, · · · , yiksR) follows niks independent draws from a multinomial distribution

defined by the vector of probabilities πks = (πks1, · · · , πksR) with πksr ∈ [0, 1] and
∑R
r=1 πksr =

1 ∀ s ∈ Sk and k ∈ K.

2.1. The basic strategy estimation model

Let pk denote the share of individuals in the population which follow strategy k defined by
the collection of R×Sk multinomial parameters πksr. The estimation function of the package
returns the estimates p∗k, π∗ksr that maximize the log likelihood:

lnL =
N∑
i=1

ln

 K∑
k=1

pk

Sk∏
s=1

R∏
r=1

(πksr)y
i
ksr

 (1)

The parameter constraints are pk ∈ [0, 1],
∑K
k=1 pk = 1, πksr ∈ [0, 1] and

∑R
r=1 πksr = 1. The

log likelihood defined in Equation (refeq: ln L) neglects the multinomial coefficients of the
likelihood which are constant factors and do not affect the location of the optima.

2.2. The model with covariates

The strategy estimation model with covariates has two parts: a measurement and a structural
part. The measurement part contains the choice parameters of the strategies and is the same
as in the model without covariates. The structural part of the model explains the prior
probability pik that individual i uses strategy k as a function of individual level covariates. The
structural part of the model is the same as in latent class regression (Dayton and Macready
1988; Bandeen-Roche et al. 1997).
The structural part uses the first strategy as the benchmark. The the log odds of using
strategy k compared to the first strategy are modeled by the multinomial logit link function
(Agresti 2003). Let xi denote a row vector that contains the covariates of individual i, then:

ln(pik/pi1) = xiβk ∀ k ∈ K

where pik is the prior probability that individual i uses strategy k and βk is a column vector
of C coefficients. The K equations above yield:

pik = exiβk∑K
k=1 e

xiβk

The log likelihood function of the model with covariates is:

lnL =
N∑
i=1

ln

 K∑
k=1

pik

Sk∏
s=1

R∏
r=1

(πksr)y
i
ksr

 (2)

The structural part of the model assumes non-differential measurement (Bandeen-Roche et al.
1997). Non-differential measurement means that the individual level covariates are not asso-
ciated with choices if we control for the strategies of the individuals. The measurement part
of the model assumes local conditional independence.
When fitting a model with covariates, the parameters in the structural part and the mea-
surement part are estimated simultaneously. This presents an advantage over a two-step

Fabian Dvorak 9

estimation. In the two-step estimation, the measurement part of the model is estimated first
and individuals are assigned to strategies on the basis of the posterior probability to use each
strategy. In the second step, the classification of individuals is used as the dependent variable
in a multinomial model with the individual level covariates as independent variables. It can be
shown that the two-step approach suffers from downward biased regression coefficients for the
effects of covariates if the classification of individuals is noisy (Bolck, Croon, and Hagenaars
2004).

3. Estimation
The estimation function of the package is stratEst.model(). The function obtains the
maximum likelihood estimates of the model parameters outlined in (refeq: ln L) or (refeq: ln
L latent class regression). The estimated model parameters are returned by the estimation
function as objects shares.par, probs.par, trembles.par, and coefficients.par. The
standard errors of the parameter estimates are returned as objects shares.se, probs.se,
trembles.se, and coefficients.se.

3.1. Algorithm

The estimation function uses expectation maximization (EM, Dempster et al. 1977) and
Newton-Raphson methods to obtain the maximum likelihood estimates of the model parame-
ters. The expectation maximization algorithm exploits the fact that the maximum likelihood
estimates of the strategy parameters could be inferred if the assignments of individuals to
strategies were known.
The optimization procedure randomly initializes parameter subject to the parameter con-
straints. After initialization the EM algorithm iterates between two steps until convergence.
In the expectation step of each iteration, the posterior probability that individual i uses strat-
egy k is updated based on the current values of the model parameters. For the model without
covariates, the posterior probability that individual i uses strategy k is a function of the prior
probability pk and likelihood of the choices given the strategy parameters πksr.

θik = pk
∏Sk
s=1

∏R
r=1(πksr)y

i
ksr∑K

k=1 pk
∏Sk
s=1

∏R
r=1(πksr)y

i
ksr

(3)

For the model with covariates the prior probability is replaced by the probability pik which
is a function of the covariates.
In the maximization step of each iteration, the model parameters are updated to the values
that maximize (1) or (2) conditional on the calculated posterior probability assignments of
individuals to strategies.
After all model parameters have been updated, the log likelihood of the updated model is
determined based on (1) or (2) and compared to the log likelihood calculated in the previous
iteration. The algorithm continues with the next iteration as long as the increase in the log
likelihood exceeds a certain threshold.
To avoid that local optima are returned by the estimation function, the optimization procedure
performs a series of short ’inner’ runs of the EM algorithm from different starting points. The
best solution obtained in the inner runs is used as the starting point of an ’outer’ run of EM.

10 Strategy Estimation in R

The estimation function of the package returns the best solution obtained in the outer runs.
Biernacki, Celeux, and Govaert (2003) show that this method can be used to efficiently locate
the maximum likelihood parameters of mixture models.

3.2. Parameter maximization

In the maximization step of each iteration, the model parameters are updated according to
the following rules.

Strategy shares

In the model without covariates, the population shares pk are updated to the expected values
of the posterior probability assignments of individuals to strategies. The optimization of
strategy shares pk, with respect to a sum-to-one constraint is performed based on the Lagrange
multiplier function

Λ(pk, λ) = lnL+ λ

(
K∑
k=1

pk − 1
)
.

Setting the partial derivatives ∂Λ/∂pk and ∂Λ/∂λ to zero and solving for pk and λ yields the
conditions

pk = −
N∑
i=1

θik
λ

and
K∑
k=1

pk = 1

which together yield λ = −N . Substitution into the first condition yields

pnextk =
∑N
i=1 θik
N

. (4)

If user defined values are supplied for some strategy shares the remaining strategy shares are
scaled by one minus the sum of these values to fulfill the sum-to-one constraint.

Choice probabilities

The strategy parameters πks are updated based on K weighted data sets. To obtain the
weighted data for strategy k, the choices of individual i are considered proportional to the
posterior probability θik that individual i uses strategy k. Using Lagrange multipliers, the
updated choice probabilities πksr follow from

πksrnext =
N∑
i=1

θiky
i
ksr∑N

i=1 θikn
i
ks

. (5)

If k is a pure strategy, it is assumed that the choice probabilities πksr are the result of
trembling hand errors (Selten 1975). Let ξks denote a vector of pure choice parameters with
elements ξksr ∈ {0, 1} and γks ∈ [0, 1] the probability of a tremble. The choice probabilities
πksr follow from

πksr = ξksr(1− γks) + (1− ξksr)
γks
R− 1 . (6)

Equation 6 describes a process in which a tremble uniformly implements one of the choices not
predicted by the strategy. The tremble rules out that a single choice which is not predicted
by a pure strategy results in a likelihood of zero that the individual uses the strategy.

Fabian Dvorak 11

The pure choice parameters ξksr are updated in the maximization step by a transformation
of the updated choice probabilities πksr according to

ξnextksr =
{

1 if πnextksr > πnextksr′ ∀ r′ 6= r

0 otherwise.
(7)

Equation 7 assigns density of one to the maximum of the updated vector πnextks . This assures
that the corresponding tremble parameters γks remain as small as possible. If there is more
than one parameter with the maximum probability, the first parameter is set to one and the
others to zero.
The updated values of the trembles follow from the substitution of (6) into (5). For the
update of the tremble all choice probabilities affected by the tremble are taken into account
which yields

γnextks =
N∑
i=1

θik
∑R
r=1(yiksr − niksξnextksr)

(
R−1

1−R·ξnext
ksr

)
∑N
i=1 θik ·R · niks

. (8)

Whenever parameters specified by the user are pure (i.e. zero or one), stratEst will automat-
ically estimate a tremble parameter.

Regression coefficients

The regression coefficients of the model with covariates are updated based on a a Newton-
Raphson step (Bandeen-Roche et al. 1997). The updated column vector of coefficients β is

βnext = β −H−1
β ∇β (9)

where ∇β is the score of the coefficient vector with elements

∂lnL
∂βqk

=
N∑
i=1

xiq(θik − pik) (10)

in columns and Hβ is the Hessian of (2) for the coefficients with elements

∂2lnL
∂βbl∂βck

=
N∑
i=1

xibxic(θil(δlk − θik)− pil(δlk − pik)) (11)

where l, k ∈ {1, · · · ,K} and b, c ∈ {1, · · · , C} and δlk = 1 if l = k and δlk = 0 otherwise.
In order to calculate pik, for individual i, the row vector xi which contains the covariates of
individual i cannot contain missing values.
Firth (1993) proposes to use the penalized log likelihood function lnLp = lnL+ 1

2 log(|Hβ|) to
account for the fact that the maximum likelihood estimates of the coefficients are biased in
finite samples. In some instances the maximum likelihood coefficients for the sample can be
infinite even though the true coefficients are not.
The Firth correction produces reasonable estimates and standard errors in such situations
by penalizing the likelihood function with the Jeffreys’ invariant prior. Using the penalized
likelihood Lp = L|Hβ|

1
2 effectively shrinks coefficients towards zero which guarantees that

maximum likelihood estimates do exist.

12 Strategy Estimation in R

Taking the derivative of the penalized log likelihood with respect to the coefficients yields the
penalized score vector ∇̂βah

. Bull, Mak, and Greenwood (2002) show that the small sample
bias can effectively be reduced by using the penalized score ∇̂βah

to update the coefficients
of the multinomial logistic regression model. The penalized score vector of the regression
coefficients in the model with covariates is:

∇̂βah
= ∂ ˆlnLp

∂βah
=

N∑
i=1

(xia(θih − pih)) + 1
2 tr

(
H−1
β

∂Hβ

∂βah

)
(12)

where h ∈ {1, · · · ,K} and a ∈ {1, · · · , C} and tr(·) is the trace of the matrix. The derivative
of the element in row l with covariate b and column k with covariate c of the hessian matrix
Hβ with respect to βah is:

∂Hβ

∂βah
=

N∑
i=1

xiaxibxic(θil(δlk − θik)(δlh − θih)− θilθik(δkh − θih) +

pil(δlk − pik)(δlh − pih)− pilpik(δkh − pih))

where h, l, k ∈ {1, · · · ,K} and a, b, c ∈ {1, · · · , C} and δab = 1 if a = b and 0 otherwise.

3.3. Standard errors

Standard errors of the model parameters are estimated by methods employed by Linzer and
Lewis (2011) using the empirical observed information matrix (Meilijson 1989). The empirical
observed information matrix is

Ie(Y, Ψ̂) =
N∑
i=1

s(Yi, Ψ̂)sT (Yi, Ψ̂), (13)

where s(Yi, Ψ̂) is the score contribution of individual i with respect to parameter vector Ψ,
evaluated at the maximum likelihood estimate Ψ̂. The reported standard errors are the square
roots of the main diagonal of the inverse of Ie(Y, Ψ̂).
To calculate the standard error of the parameter ηr with

∑R
r=1 ηr = 1, the score func-

tion s(Yi, η̂r) transformed into log-ratios µr = ln(ηr/η1) and the variance-covariance matrix
VAR(η) is calculated based on (13). The variance-covariance matrix VAR(µ) of the parame-
ters is approximated using the delta method

VAR(f(µ̂)) = f ′(µ)Ie(Y, µ̂)−1f ′(µ)T , (14)

where f ′(µ) is the Jacobian of the function f(µr) = ηr = eµr/
∑R
r=1 µr which converts the

values back to the original units.
The following score contributions are used to calculate the empirical observed information
matrix defined in (13).

Strategy shares

The shares are transformed into log-rations as p∗k = ln(pk/p1) and the score contribution
∂lnL/∂p∗k of individual i is

s(Yi, p∗k) = θik − pk. (15)

Fabian Dvorak 13

Let f(p∗k) = pk = ep
∗
k/
∑K
l=1 e

p∗l denote the inverse of the transformation, then the Jacobian
f ′(p∗) has elements

∂f(p∗k)
∂p∗l

=
{
−pkpl if l 6= k

pk(1− pl) if l = k
(16)

and the variance-covariance matrix of the shares is estimated by (14) using the inverse of (13)
based on the score contributions of the shares defined in (15).

Choice probabilities

If πksr are mixed parameters standard errors are calculated based on the transformation
π∗ksr = ln(πksr/πks1) and the score contribution ∂lnL/∂π∗ksr of individual i is

s(Yi, π∗ksr) = θik
(
yiksr − niksπksr

)
. (17)

Let g(π∗ksr) = πksr = eπ
∗
ksr/

∑R
r=1 π

∗
ksr denote the inverse of the transformation, then the

Jacobian g′(π∗) has elements

∂g(π∗ksr)
∂π∗ltq

=

−πksrπltq if k = l and s = t and r 6= q

πksr(1− πltq) if k = l and s = t and r = q

0 otherwise

(18)

and the variance-covariance matrix of the choice probabilities is estimated by (14) using the
inverse of (13) based on the score contributions defined in (17).
For a pure strategy, the score contribution ∂lnL/∂γks of individual i is

s(Yi, γ∗ks) = θik

R∑
r=1

yiksr
πksr

(1− ξksr
R− 1 − ξksr

)
(19)

the reported estimates of the variance-covariance of the tremble probabilities is the inverse of
(13) using the score contributions outlined in (19).

Regression coefficients

The reported estimates of the variance-covariance is the inverse of (13) using the score of the
regression coefficients outlined in (10) or (12) if the Firth penalty is used.

Bootstrapped standard errors

Standard errors of the model parameters can also be obtained by a parametric bootstrap
procedure (Efron and Tibshirani 1993). In each bootstrap samplem (m=,1,. . . ,M), parameter
estimates are obtained based on the observations of N individuals sampled with replacement.
Estimates for the strategy parameters are generated by fixing the value of all remaining
strategy parameters of the model at the original maximum likelihood estimate for these
parameters to maintain the original structure of the model across the bootstrap estimates.
For the model with covariates, the Firth penalty is used to obtain the estimates of the re-
gression coefficients for each sample. The reason is that it is likely that some samples suffer

14 Strategy Estimation in R

from quasi complete separation. In a sample with quasi complete separation, maximum like-
lihood estimates of the regression coefficients do not exist. The penalized estimation prevents
that extreme parameter values are obtained in these samples which would bias the estimated
standard errors of the regression coefficients.

4. Model fit
The model checking function of the package is stratEst.check(). The function returns the
log likelihood of the model, the number of free model parameters, and the values of three
information criteria. The function can also be used to assess the global and local model fit
based on the Pearson chi square goodness of fit statistic.

4.1. Information criteria

Three different penalized-likelihood criteria can be used to assess the global model fit. The
criteria are the Akaike Information Criterion (AIC, Akaike 1973), the Bayesian Information
Criterion (BIC, Schwarz 1978), and the Integrated Classification Likelihood (ICL, Biernacki,
Celeux, and Govaert 2000). The formulas for the three model selection criteria are

AIC = −2lnL+ 2df

BIC = −2lnL+ log(Nobs)df

ICL = BIC + 2
N∑
i=1

K∑
k=1

θiklog(θik),

In all three formulas, df represents the number of free parameters of the model returned as
the object model$free.par. The three information criteria differ in the size of the penalty
for model complexity. AIC penalizes the log likelihood with two times the number estimated
parameters. BIC penalizes the log likelihood with the number of estimated parameters times
the natural logarithm of the number of observations (model$num.obs). ICL uses the BIC
penalty plus an extra penalty term for the entropy of the posterior probability assignments
of individuals to strategies.

4.2. χ2 test of global fit

The Pearson χ2 goodness of fit test can be used to assess the global model fit of latent class
models (van Kollenburg, Mulder, and Vermunt 2015). Pearson χ2 goodness of fit test statistic
is:

χ2 =
K∑
k=1

Sk∑
s=1

R∑
r=1

(oksr − eksr)2

eksr
(20)

where oksr =
∑N
i=1 θiky

i
ksr and eksr =

∑N
i=1 pkπksrn

i
ks represent the observed and the expected

number of choices of alternative r by strategy k in state s. As the assignments of individuals to
strategies are unknown, the statistic is calculated using the posterior probability assignment
θik of individual i to strategy k.
The distribution of the test statistic is estimated by a parametric bootstrap. The bootstrap
procedure simulates M samples of data for the fitted model. In each sample, individuals

Fabian Dvorak 15

are randomly assigned to the strategies with probabilities equal to the estimated shares. For
each individual, choices are simulated conditional on the input observed by the individual
and the fitted choice parameters of the fitted strategy. The distribution of the test statistic
is approximated by calculating the statistic defined in (20) in each of the M samples.

4.3. χ2 test of local fit

To local fit of each strategy is assessed by assigning individuals to strategies based on the
maximum values of the posterior probability assignments (Bandeen-Roche et al. 1997). Let
Nk denote the set of all individuals with a posterior probability maximum for strategy k. The
Pearson χ2 statistic for strategy k is:

χ2
k =

∑
i∈Nk

Sk∑
s=1

R∑
r=1

(oksr − eksr)2

eksr
(21)

with oksr = yiksr and eksr = πksrn
i
ks as the observed and the expected number of choices of

alternative r by strategy k in state s.
The distributions of the K local fit statistics are estimated by a parametric bootstrap. The
bootstrap simulates M samples of data for the fitted model. In each sample, individuals are
randomly assigned to the strategies with probabilities equal to the estimated shares. For each
individual, choices are simulated conditional on the input observed by the individual and the
fitted choice parameters of the fitted strategy. For each sample individuals are assigned to
strategies based on the maximum values of the posterior probability. The distribution of the
test statistic is approximated by calculating the statistic defined in (20) in each of the M
samples.

5. Model selection
The number of free model parameters equals (K−1)+(R−1) ·

∑K
k=1 Sk for the model without

covariates and C(K − 1) + (R − 1) ·
∑K
k=1 Sk for the model with covariates. Four different

methods can be used to reduce the number of free model parameters.

5.1. Parameter fixation

The first method is to fix model parameters at user defined values. This option exists for
all classes of model parameters. The fixation of model parameters can often be justified on
the basis of theory. It is generally possible to fixate only a subset of parameters of the same
class (For example two out of four strategy shares). An exception is the class of regression
coefficients. For this class, either all or no parameter can be fixed. Fixed parameters are not
estimated and reduce the number of free model parameters accordingly.
The fixation of parameters which are subject to a sum-to-one constraint affects all other
parameters affected by the constraint. If parameters are fixed at a certain value, the remaining
parameters are updated and subsequently scaled by the one minus the sum of fixed parameters.

5.2. Parameter restrictions

The argument r.probs of the estimation function stratEst.model() can be used to re-

16 Strategy Estimation in R

strict the number of estimated choice probabilities π. Three options can be used which are
"strategies", "states", and "global".
The option "strategies" estimates one parameter vector πk = (πk1, . . . , πkR) for each of the
K strategies. The vector πk determines the probability of choices in all states s ∈ {1, . . . , Sk}
of strategy k, reducing the number of free model parameters by (R− 1) ·

∑K
k=1 Sk − 1.

The option "states" estimates one parameter vector πs = (πs1, . . . , πsR) for each state s ∈
{1, . . . ,max(Sk)}. The vector πs determines the probability of choices in state s for all
strategies, reducing the number of free model parameters by (R− 1) ·

∑K
k=1 Sk − 1.

The option "global" estimates a single parameter vector π = (π1, . . . , πR) that determines
the probability of choices in all states of each strategy, reducing the number of free model
parameters by (R− 1) ·

∑K
k=1 Sk − 1.

For pure strategies, the argument r.trembles works equivalently. The option "strategies"
estimates one tremble probability γk per strategy. The option "states" estimates one tremble
probability γs per state. The option "global" estimates a single tremble probability γk which
applies globally.

Restricted parameter estimation

If restrictions to the strategy parameters apply, the maximization step in the parameter
estimation needs to be adapted accordingly. Let Zt denote the set of all states s of strategy
k where the corresponding strategy parameters are restricted to have the same underlying
parameter vector ζt, where t(t = 1, . . . , T) is the index of the restrictions. The individual
score contributions to ζt take all parameters affected by restriction t into account, i.e.

πnexttr =
N∑
i=1

K∑
k=1

∑
s∈Zt

θiky
i
ksr∑N

i=1
∑
s∈Zt

θikn
i
ks

(22)

if ζt is a vector of choice probabilities. The tremble probabilities ζt are updated according to

γnextt =
N∑
i=1

K∑
k=1

∑
s∈Zt

θik
∑R
r=1(yiksr − niksξnextksr)

(
R−1

1−R·ξnext
ksr

)
∑N
i=1

∑
s∈Zt

θik ·R · niks
. (23)

Restricted standard errors

The score vectors change accordingly. The score contribution of individual i is the sum over
all states s ∈ Zt whit parameters are affected by restriction t. The contribution of individual
i to the score of the restricted choice probability ∂lnL/∂π∗tr is

s(Yi, π∗tr) =
K∑
k=1

θik
∑
s∈Zt

(
yiksr − niksπksr

)
. (24)

and the Jacobian g′(π∗) has elements

∂g(π∗tr)
∂π∗uq

=

−πtrπuq if t = u and r 6= q

πt(1− πu) if t = u and r = q

0 otherwise.

(25)

Fabian Dvorak 17

The contribution of individual i to the score of the restricted tremble probability ∂lnL/∂γt
of individual i is

s(Yi, γt) =
K∑
k=1

∑
s∈Zt

θik

R∑
r=1

yiksr
πksr

(1− ξksr
R− 1 − ξksr

)
(26)

5.3. Parameter selection

The number of choice parameters π and γ can be selected with the argument select of the
estimation function stratEst.model(). The options "probs" and "trembles" select the
number of choice parameters π, and γ respectively. The selection is performed based on one
of the three information criteria outlined in Section ??. The argument which identifies the
information criterion is crit. Options are "aic", "bic" or "icl".
The arguments r.probs and r.trembles control which combinations of parameter vectors
can be reduced to a single parameter vector. The option "strategies" defines that the
parameter vectors within each strategy are selected. The option "states" defines that the
parameter vectors within each state across strategies are selected. The option "global"
defines that all parameter vectors are selected.
The selection procedure starts by estimating the unrestricted model. For every pairwise com-
bination of parameters vectors of the same parameter class, a model is estimated where two
vectors of parameters are reduced to a single vector. The lowest value of the information cri-
terion of these models is compared to the value of the information criterion of the unrestricted
model. If the model with the reduced number of parameters has a better fit according to the
selection criterion, it is the new best model. The procedure continues as long as the reduction
of any feasible combination of two parameters vectors improves the fit of the model.

5.4. Strategy selection

The number of strategies K is selected with the option select = "strategies". The se-
lection is performed based on one of the three information criteria outlined in Section 4.
The argument that identifies the information criterion is crit. Options are "aic", "bic" or
"icl".
The selection procedure starts by estimating the complete model with K strategies. Next, the
K nested models with K − 1 strategies are estimated. The K nested models are obtained by
excluding one strategy from the set of candidate strategies. The best value of the information
criterion of the K nested models is compared to the value of the complete model with K
strategies. If the value of the nested model is lower, this is the new best model. The selection
procedure is repeated as long as the the exclusion of one strategy improves the fit of the
model.

6. Simulated data
The simulation function of the package is stratEst.simulate(). The function can be used to
generate data on the basis of a fully specified model. A fully specified model can be obtained
defining each parameter of the model by hand or by fitting the model to some data.
The simulation function can be used to validate the parameter estimates and standard errors

18 Strategy Estimation in R

returned by the estimation function. Consider a model with two strategies for the choices left
and right:

R> set.seed(1)
R> lr <- c("left","right")
R> mixed <- stratEst.strategy(choices = lr, inputs = lr, num.states = 1)
R> pure <- stratEst.strategy(choices = lr, inputs = lr,
+ prob.choices = c(1,0,0,1),
+ tr.inputs = c(1,2,1,2))
R> strategies <- list("mixed" = mixed, "pure" = pure)

Strategy mixed plays left with a mixed probability π drawn from U(0, 1). Strategy pure
plays left if the input is left, and right if the input is right with tremble probability γ from
U(0, 0.25). The strategy shares are the result of regression coefficient β drawn from N(0, 1).

R> pi <- runif(1)
R> gamma <- runif(1)/4
R> beta <- rnorm(1)

The value of β defines the share of the mixed strategy p. The parameters π and γ are inserted
into the strategies.

R> p <- 1/sum(1 + exp(beta))
R> sim.shares <- c(p, 1-p)
R> mixed$prob.left <- pi
R> mixed$prob.right <- 1 - pi
R> pure$tremble <- gamma
R> sim.strategies <- list("mixed" = mixed, "pure" = pure)

Now, the model is fully specified and can be used to simulate a data set.

R> sim.data <- stratEst.simulate(strategies = sim.strategies,
+ shares = sim.shares, num.ids = 100,
+ num.games = 10, num.periods = rep(5,10))

The function call creates a stratEst.data object which contains the observations of 100
individuals. Each individual is assigned to one of the strategies with probabilities defined by
sim.shares. Each individual plays ten games with five periods. In each period, the individual
observes an input randomly drawn from the set of inputs. The input triggers a state transition
of the strategy used by the indvidual. After the state transition, the individual makes chooses
an alternative with probabilities defined by the new state.
Two models are estimated. One model without covariates, and one model with an intercept
as covariate.

R> model <- stratEst.model(data = sim.data, strategies = strategies)
R> sim.data$intercept <- rep(1,nrow(sim.data))
R> model.lcr <- stratEst.model(data = sim.data, strategies = strategies,
+ covariates = "intercept")

Fabian Dvorak 19

The estimated parameters differ from the true parameters because of sampling error. The
function stratEst.test() can be used to test if the estimated parameters differ from the
true parameters.

R> pars <- c(p, 1-p, pi, 1-pi, gamma)
R> test.pars <- stratEst.test(model, values = pars)
R> print(test.pars)

estimate diff std.error t-value df Pr(>|t|)
shares.par.1 0.4300 -0.0242 0.0495 -0.4892 97 0.6258
shares.par.2 0.5700 0.0242 0.0495 0.4892 97 0.6258
probs.par.1 0.2716 0.0061 0.0094 0.6535 97 0.5150
probs.par.2 0.7284 -0.0061 0.0094 -0.6535 97 0.5150
trembles.par.1 0.0923 -0.0008 0.0057 -0.1327 97 0.8947

The simulation function generates a variable strategy that contains the result of the prob-
abilistic assignment of individuals to strategies. This variable can be used to verify that the
estimated model parameters returned by the estimation function are the maximum likelihood
parameters of the sample.

R> strategy <- sim.data$strategy
R> choice <- sim.data$choice
R> input <- sim.data$input
R> p.ml <- mean(strategy == "mixed")
R> pi.ml <- mean(choice[strategy == "mixed"] == "left")
R> gamma.ml <- mean(choice[strategy == "pure"] != input[strategy == "pure"])
R> print(round(c(p.ml, 1 - p.ml, pi.ml, 1 - pi.ml, gamma.ml), 4))

[1] 0.4300 0.5700 0.2716 0.7284 0.0923

Table 1 summarizes the estimation results obtained by repeating the simulation example
10.000 times. The first three rows depict the results for the parameters of the model without
the covariate. The last three rows depict the results for the parameters of the model with
the covariate. The columns show the means of the estimated parameters, the difference and
absolute difference of the estimated and the maximum likelihood parameters, and the rejection
probability of a t test for the model parameters.
The first column shows that the means of the estimated parameters are close to the means
of the distributions the parameters are sampled from. Columns two and three show that the
estimation algorithm generally coverges to the maximum likelihood parameters of the sample.
Columns four and five show that the rejection rate of t tests of the model parameters is close
to the 5 percent alpha level for both analytic and bootstrapped standard errors.

7. Examples

7.1. Dal Bo and Frechette, 2011
This example illustrates how to replicate the strategy estimation results of the seminal strat-

20 Strategy Estimation in R

P(> |t|) < 0.05
θ θ̂m θ∗

m − θ̂m |θ∗
m − θ̂m| analytic bootstrap

model without covariates
p 0.4966 -6e-05 0.0012 0.0537 0.0551
π 0.5002 -2e-06 0.0002 0.0439 0.0558
γ 0.1265 -3e-05 0.0004 0.0497 0.0613
model with covariates
β -0.0012 -4e-02 1.6639 0.0442 0.0468
π -0.5002 -2e-06 0.0002 0.0439 0.0553
γ -0.1265 -3e-05 0.0004 0.0497 0.0612

Table 1: Estimates and rejection probability for simulated data. Average estimates and
rejection probability across 10.000 Monte Carlo samples of simulated data. Each sample
contains the choices of 100 individuals in 10 games with 5 periods. θm is the maximum
likelihood estimate of the parameter in sample m. θ̂m is the parameter estimate returned
by the estimation function for sample m. Bootstrapped standard errors are based on 100
samples.

egy estimation study by Dal Bó and Fréchette (2011). The study reports results on the
evolution of cooperation in the indefinitely repeated prisoner’s dilemma across six different
treatments. The six treatments differ in the stage-game parameters and the continuation
probability δ of the repeated game.
The stage-game parameters are depicted in Figure 1 where the parameter R is either 32, 40
or 48. For each value of R two treatments exist with δ of 1/2 or 3/4 resulting in 2 times three
between subject design with six treatments overall. Dal Bó and Fréchette (2011) report the

C D

C R,R 12,50

D 50,12 25,25

Figure 1: Stage game of Dal Bó and Fréchette (2011)

results of treatment-wise strategy frequency estimation for six candidate strategies: Always
Defect (ALLD), Always Cooperate (ALLC), Tit-For-Tat (TFT), Grim-Trigger (GRIM), Win-
Stay-Lose-Shift (WSLS), and a trigger strategy with two periods of punishment (T2). The six
strategies are the elemenets of the list strategies.DF2011. The Tit-For-Tat strategy looks
like this:

R> print(strategies.DF2011$TFT)

prob.d prob.c tremble tr(cc) tr(cd) tr(dc) tr(dd)
1 0 1 NA 1 2 1 2
2 1 0 NA 1 2 1 2

Fabian Dvorak 21

The strategy TFT chooses between the alternatives defect (d) and cooperate (c). State
transitions are triggered by four different inputs: The four inputs reflect the combination of
actions in the last period. The first letter represents the own action in the last period, and
the second letter the action of the other player. All strategies in the list strategies.DF2011
have the same structure of choices and inputs.
The data frame DF2011 contains the experimental data collected by Dal Bó and Fréchette
(2011). The data can be inspected in the console with the command print(DF2011).
The following code creates a stratEst.data frame which fits the structure of strategies:

R> data.DF2011 <- stratEst.data(data = DF2011, choice = "choice",
+ input = c("choice","other.choice"),
+ input.lag = 1)

The options input = c("choice","other.choice") and input.lag = 1 create the input
variable by concatenating the own and the other player’s choice of the previous period. The
following model estimation commmand can be used to replicate the findings of Dal Bó and
Fréchette (2011):

R> model.DF2011 <- stratEst.model(data = data.DF2011,
+ strategies = strategies.DF2011,
+ sample.id = "treatment")

The command estimates one vector of shares and one tremble parameter for each treatment.
The estimated shares are the strategy shares reported in the first column of Table 7 on page
424 of Dal Bó and Fréchette (2011).

R> print(round(do.call(rbind, model.DF2011$shares), 2))

ALLD ALLC GRIM TFT WSLS T2
treatment.D5R32 0.92 0.00 0.00 0.08 0.00 0.00
treatment.D5R40 0.78 0.08 0.04 0.10 0.00 0.00
treatment.D5R48 0.53 0.07 0.00 0.38 0.02 0.00
treatment.D75R32 0.65 0.00 0.00 0.35 0.00 0.00
treatment.D75R40 0.11 0.30 0.27 0.33 0.00 0.00
treatment.D75R48 0.00 0.08 0.12 0.56 0.00 0.24

7.2. Fudenberg, Rand and Dreber, 2011

Fudenberg et al. (2012) conduct a prisoner’s dilemma experiment in which intended choices
are implemented with noise. The stage-game payoffs are such that cooperation means paying
a cost c to give a benefit b to the other player. The authors run four between subjects
treatments. The cost c is fixed at 2 points experimental currency in every treatment. The
benefit to cost ratio b/c varies across treatments and took the values 1.5, 2, 2.5, and 4.
Because of the noisy implementation of choices, Fudenberg and colleagues add several lenient
and forgiving strategies to the original set of candidate strategies used by Dal Bó and Fréchette

22 Strategy Estimation in R

(2011). The augmented set of strategies is available as list object strategies.FRD2012. The
choices of the strategies are d (defect), and c (cooperate). The four inputs reflect the four
different combinations of the own choice, and the choice of the other player in the previous
period.
The data frame FRD2012 contains the raw data of the experiment. It contains two variables
that indicate own choice and the choice of the other player in the last period. These two
variables are passed to the argument inputs of the data generation function:

R> data.FRD2012 <- stratEst.data(data = FRD2012, choice = "choice",
+ input =c("last.choice","last.other"))

The following code replicates the strategy shares reported by Fudenberg et al. (2012) in Table
3 on page 733 of the paper.

R> model.FRD2012 <- stratEst.model(data = data.FRD2012,
+ strategies = strategies.FRD2012,
+ sample.id = "bc")
R> print(round(do.call(rbind, model.FRD2012$shares), 2))

ALLC TFT TF2T TF3T T2FT T2F2T GRIM GRIM2 GRIM3 ALLD DTFT
bc.1.5 0.00 0.19 0.05 0.01 0.06 0.00 0.14 0.06 0.06 0.29 0.14
bc.2 0.03 0.06 0.00 0.03 0.07 0.11 0.07 0.18 0.28 0.17 0.00
bc.2.5 0.00 0.09 0.17 0.05 0.02 0.11 0.11 0.02 0.24 0.14 0.05
bc.4 0.07 0.09 0.18 0.13 0.05 0.09 0.06 0.07 0.10 0.14 0.03

For the data the treatment b/c = 4, the estimation function finds a better solution with a
larger log likelihood than the solution reported by Fudenberg et al. (2012).

7.3. Dvorak, Fischbacher and Schmelz, 2020

Dvorak, Fischbacher, and Schmelz (2020) study conformity and anticonformity in a binary
choice experiment. Participants are matched in groups of three and compete for a monetary
reward with the other two group members. In some choices, one group member is informed
about the choices of two other group members before making the own choice. For these
choices, the experimental design allows to predict the prefered alternative of the participant.
Dvorak et al. (2020) find that two-thirds of the participants follow a conformist strategy.
The conformist strategy generally follows the own preference if the choices of the other group
members are in line with the own preference. It frequently deviates from the own preference
and chooses the other alternative if the choices of the other group members are not in line
with the own preference.
The remaining one-third of the participants follows an anticonformist strategy. The anticon-
formist strategy generally follows the own preference if the choices of the other group members
are not in line with the own preference. It frequently deviates from the own preference the
choices of the other group members are in line with the own preference.
The fitted choice parameters of the strategies are:

Fabian Dvorak 23

R> print(strategies.DFS2020)

$anticonformist
prob.follow prob.deviate tr(not in line) tr(in line)

1 0.823 0.177 1 2
2 0.404 0.596 1 2

$conformist
prob.follow prob.deviate tr(not in line) tr(in line)

1 0.425 0.575 1 2
2 0.860 0.140 1 2

The data set DFS2020 contains the experimental data of Dvorak et al. (2020). The variables
"choice" indicates if the choice of the participant follows the own preference or deviates from
the own preference. The variable "others.choices" indicates if the choices of the two other
two group members are in line with the preference of the participant or not.
The data set additionally contains two the variables which are used as covariates of the
strategy estimation model by Dvorak et al. (2020). The first is an intercept, which is one
for every observation. The second is the score of the participant in a post-experimental
conformity questionnaire (Mehrabian and Stefl 1995). The mean conformity score is -0.078
with a standard deviation of 1.02.
The following command creates a stratEst.data object with the variable others.choices
as input:

R> data.DFS2020 <- stratEst.data(data = DFS2020,
+ input = c("others.choices"))

The model with covariates is estimated with the command:

R> model.DFS2020 <- stratEst.model(data = data.DFS2020 ,
+ strategies = strategies.DFS2020,
+ covariates = c("intercept",
+ "conformity.score"))

The estimated coefficients are:

R> print(model.DFS2020$coefficients)

anticonformist conformist
intercept 0 0.8273618
conformity.score 0 0.8697285

The first strategy is the reference category of the structural model. The coefficients for the ref-
erence category are always zero. The second column contains the estimated coefficients for the
conformist strategy. The estimated coefficients indicate that prior probability to use the con-
formist strategy increases with the score in the conformity questionnaire. The individual prior
probabilities of the participants are returned as object model.DFS2020$prior.assignment.

24 Strategy Estimation in R

The estimated coefficient of the intercept can be used to calculate the estimated prior prob-
ability to use the conformist for a participant with a conformity score of zero. The prior
probability is exp(0.83)/(1 + exp(0.83)) = 0.69. A participant who scores on standard
deviation higher than average in the conformity questionnaire has a prior probability of
exp(0.83 + 0.87)/(1 + exp(0.83 + 0.87)) = 0.85 to use the conformist strategy.
The function stratEst.test() can be used to test whether the estimated coefficients differ
from zero.

R> test.coefficients <- stratEst.test(model.DFS2020, par = "coefficients")
R> print(test.coefficients)

estimate std.error t-value df Pr(>|t|)
coefficients.par.1 0.8274 0.3065 2.6997 103 0.0081
coefficients.par.2 0.8697 0.3184 2.7319 103 0.0074

The function stratEst.check() can be used to assess the global and local model fit based
on the Pearson χ2 test statistic.

R> check.DFS2020 <- stratEst.check(model.DFS2020, chi.tests = TRUE,
+ bs.samples = 100)
R> print(check.DFS2020$chi.global)

chi^2 min mean max p.value
model.DFS2020 0.08554165 0.07108578 2.623929 8.065177 0.99

R> print(check.DFS2020$chi.local)

chi^2 min mean max p.value
anticonformist 52.29308 17.60894 47.81437 79.03572 0.38
conformist 117.70654 58.92359 109.50872 155.70476 0.31

The distribution of the test statistics is approximated by drawing 100 bootstrap samples
to limit computation time. The p value of the global test indicates the probability of the
data given that the estimated model is the true model. The p value of the local test for
the anticonformist strategy indicates the probability of the data of the subset of participants
classified as anticonformist given that the fitted strategy is the true strategy. The p value of
the test for the conformist strategy can be interpreted in the same way. Hence, both tests
address the null hypothesis that the model is the true data generating model.

8. Function documentation

8.1. stratEst.strategy()

The strategy generation function of the package. The syntax of the function call is:

Fabian Dvorak 25

R> stratEst.strategy(choices, inputs = NULL, prob.choices = NULL,
+ tr.inputs = NULL, trembles = NULL, num.states = 1)

Inputs

choices: a character vector. The levels of the factor choice in the data.

inputs: a character vector. The levels of the factor input in the data.

prob.choices: a numeric vector. The choice probabilities of the strategy in row
wise order.

tr.inputs: a vector of integers. The deterministic state transitions of the
strategy in row wise order.

trembles: a numeric vector. The tremble probabilities of the strategy.

num.states: an integer. The number states of the strategy.

Outputs

A stratEst.strategy object. A data frame with the following variables:

prob.x the probability of choice x.

tremble: the probability to observe a tremble.

tr(x): the deterministic state transitions of the strategy for input x.

8.2. stratEst.data()

The data generation function of the package. The syntax of the function call is:

R> stratEst.data(data, choice = "choice", id = "id", input, input.lag = 0,
+ input.sep = "", game = "game", period = "period",
+ add = NULL, drop = NULL)

Input

data: a data.frame in the long format.

choice: a character string. The variable in data which contains the
discrete choices. Default is "choice".

input: a character string. The names of the input generating variables
in data. At least one input generating variable has to be speci-
fied. Default is c("input").

26 Strategy Estimation in R

input.lag: a numeric vector. The time lag in periods of the input generating
variables. The vector must have as many elements as variables
specified in the object input. Default is zero.

input.sep: a character string. Separates the input generating variables.
Default is "".

id: a character string. The name of the variable in data that iden-
tifies observations of the same individual. Default is "id".

game: a character string. The name of the variable in data that iden-
tifies observations of the same game. Default is "game".

period: a character string. The name of the variable in data that iden-
tifies the periods of a game. Default is "period".

add: a character vector. The names of variables in the global envi-
ronment that should be added to the stratEst.data object.
Default is NULL.

drop: a character vector. The names of variables in data that should
be dropped. Default is NULL.

Output

A stratEst.data object. A data frame in the long format with the following variables:

id: the variable that identifies observations of the same individual.

game: the variable that identifies observations of the same game.

period: the period of the game.

choice: the discrete choices.

input: the inputs.

8.3. stratEst.model()

The estimation function of the package. The syntax of the function call is:

R> stratEst.model(data, strategies, shares = NULL, coefficients = NULL,
+ covariates = NULL, sample.id = NULL, response = "mixed",
+ sample.specific = c("shares","probs","trembles"),
+ r.probs = "no", r.trembles = "global", select = NULL,
+ outer.tol = 1e-10, outer.max = 1000, inner.runs = 10,
+ inner.tol = 1e-5, inner.max = 10, lcr.runs = 100,
+ lcr.tol = 1e-10, lcr.max = 1000 , bs.samples = 1000,
+ quantiles = c(0.025,0.5,0.975), stepsize = 1,
+ penalty = FALSE, verbose = TRUE)

Fabian Dvorak 27

Input

data: a stratEst.data object or data.frame.

strategies: a list of strategies. Each element if the list must be an object of
class stratEst.strategy.

shares: a numeric vector of strategy shares. The order of the elements
corresponds to the order in strategies. Elements which are
NA are estimated from the data. Use a list of numeric vectors if
data has more than one sample and shares are sample specific.

coefficients: a matrix of latent class regression coefficients.

covariates: a character vector with the names of the covariates of the latent
class regression model in the data. The covariates cannot have
missing values.

sample.id: a character string indicating the name of the variable which
identifies the samples in data. Individual observations must be
nested in samples.

response: a character string which is either "pure" or "mixed". If "pure"
the estimated choice probabilities are either zero or one. If
"mixed" the estimated choice probabilities are mixed param-
eters. The default is "mixed".

sample.specific: a character vector, Defines the model parameters that are sam-
ple specific. Can contain the character strings "shares" ("probs",
"trembles". If the vector contains "shares" ("probs", "trembles"),
the estimation function estimates a set of shares (choice proba-
bilities, trembles) for each sample in the data.

r.probs: a character string. Options are "no", "strategies", "states"
or "global". Option "no" yields one vector of choice probabil-
ities per strategy and state. Option "strategies" yields one
vector of choice probabilities per strategy. Option "states"
yields one vector of choice probabilities per state. Option "global"
yields a single vector of choice probabilities. Default is "no".

r.trembles: a character string. Options are "no", "strategies", "states"
or "global". Option "no" yields one tremble probability per
strategy and state. Option "strategies" yields one tremble
probability per strategy. Option "states" yields one tremble
probability per state. Option "global" yields a single tremble
probability. Default is "no".

select: a character vector. Indicates the classes of model parameters
that are selected. Can contain the strings "strategies", "probs",
and "trembles". If the vector contains"strategies" ("probs",

28 Strategy Estimation in R

"trembles"), the number of strategies (choice probabilities, trem-
bles) is selected based on the selection criterion specified in
"crit". The selection can be restricted with the arguments
r.probs and r.trembles. Default is NULL.

min.strategies: an integer. The minimum number of strategies in case of strat-
egy selection. The strategy selection procedure stops if the min-
imum is reached.

crit: a character string. Defines the information criterion used for
model selection. Options are "bic" (Bayesian information crite-
rion), "aic" (Akaike information criterion) or "icl" (Integrated
Classification Likelihood). Default is "bic".

se: a string. Defines how standard errors are obtained. Options are
"analytic" or "bootstrap". Default is "analytic".

outer.runs: an integer. The number of outer runs of the solver. Default is
1.

outer.tol: a number close to zero. The tolerance of the stopping condition
of the outer runs. The iterative algorithm stops if the relative
decrease of the log likelihood is smaller than this number. De-
fault is 1e-10.

outer.max: an integer. The maximum number of iterations of the outer runs
of the solver. The iterative algorithm stops after "outer.max"
iterations if it does not converge. Default is 1000.

inner.runs: an integer. The number of inner runs of the solver. Default is
10.

inner.tol: a number close to zero. The tolerance of the stopping condition
of the inner runs. The iterative algorithm stops if the relative
decrease of the log likelihood is smaller than this number. De-
fault is 1e-5.

inner.max: an integer. The maximum number of iterations of the outer runs
of the solver. The iterative algorithm stops after "inner.max"
iterations if it does not converge. Default is 10.

lcr.runs: an integer. The number of latent class regression runs of the
solver. Default is 100.

lcr.tol: a number close to zero. The tolerance of the stopping condition
of the latent class regression runs. The iterative algorithm stops
if the relative decrease of the log likelihood is smaller than this
number. Default is 1e-10.

lcr.max: an integer. The maximum number of iterations of the latent
class regression runs of the solver. The iterative algorithm stops

Fabian Dvorak 29

after "lcr.max" iterations if it does not converge. Default is
1000.

bs.samples: an integer. The number of bootstrap samples.

quantiles: a numeric vector. The quantiles of the sampling distribution of
the estimated parameters. Depending on the option of se, the
quantiles are either estimated based on a t-distribution with
res.degrees of freedom and the analytic standard errors or
based the bootstrap.

step.size: a number between zero and one. The step size of the Fisher
scoring step which updates the coefficients. Values smaller than
one slow down the convergence of the algorithm and prevent
overshooting. Default is one.

penalty: a logical. If TRUE the Firth penalty is used to estimate the co-
efficients of the latent class regression model. Default is FALSE.

verbose: a logical. If TRUE information about the estimation process are
printed to the console. Default is FALSE.

Output

An object of class stratEst. A list with the following elements.

strategies: the fitted strategies.

shares: the strategy shares.

probs: the choice probabilities of the strategies.

trembles: the tremble probabilities of the strategies.

gammas: the gamma parameters of the strategies.

coefficients: the coefficients of the covariates.

shares.par: the estimated strategy share parameters.

probs.par: the estimated choice probability parameters.

trembles.par: the estimated tremble parameters.

gammas.par: the estimated gamma parameters.

coefficients.par: the estimated coefficient parameters of the covariates.

shares.indices: the parameter indices of the strategy shares.

probs.indices: the parameter indices of the choice probabilities.

trembles.indices: the parameter indices of the tremble probabilities.

30 Strategy Estimation in R

coefficients.indices: the parameter indices of the coefficients.

loglike: the log likelihood of the model.

num.ids: the number of individuals.

num.obs: the number of observations.

num.par: the total number of model parameters.

free.par: the number of free model parameters.

res.degrees: the residual degrees of freedom.

aic: the Akaike information criterion.

bic: the Bayesian information criterion.

icl: The integrated classification likelihood.

crit.val: the value of the selection criterion defined by the argument crit.

eval: the total number of iterations of the solver.

tol.val: the relative decrease of the log likelihood in the last iteration of
the algorithm.

convergence: the maximum of the absolute scores of the estimated model
parameters.

entropy.model: the entropy of the model.

entropy.assignments: the entropy of the posterior probability assignments of individ-
uals to strategies.

chi.global: the chi square statistic for global model fit.

chi.local: the chi square statistics for local model fit.

state.obs: the weighted observations for each strategy state.

post.assignments: the posterior probability assignments of individuals to strate-
gies.

prior.assignments: the prior probability of each individual to use a strategy as pre-
dicted by the individual covariates.

shares.se: the standard errors of the estimated share parameters.

probs.se: the standard errors of the estimated choice probability parame-
ters.

trembles.se: the standard errors of the estimated tremble probability param-
eters.

Fabian Dvorak 31

gammas.se: the standard errors of the estimated gamma parameters.

coefficients.se: the standard errors of the estimated coefficients.

shares.quantiles: the quantiles of the estimated population shares.

probs.quantiles: the quantiles of the estimated choice probabilities.

trembles.quantiles: the quantiles of the estimated trembles.

coefficients.quantiles: the quantiles of the estimated coefficients.

shares.score: the scores of the estimated share parameters.

probs.score: the score of the estimated choice probabilities.

trembles.score: the score of the estimated tremble probabilities.

coefficients.score: the score of the estimated coefficients.

shares.fisher: the Fisher information matrix of the estimated shares.

probs.fisher: the Fisher information matrix of the estimated choice probabil-
ities.

trembles.fisher: the Fisher information matrix of the estimated trembles.

coefficients.fisher: the fisher information matrix of the estimated coefficients.

fit.args: the input objects of the function call.

8.4. stratEst.simulate()

The simulation function of the package. The syntax of the function call is:

R> stratEst.simulate(data = NULL, strategies, shares = NULL,
+ coefficients = NULL, covariates = NULL,
+ num.ids = 100, num.games = 5, num.periods = NULL,
+ fixed.assignment = FALSE, input.na = FALSE)

Input

data: a stratEst.data object. Alternatively, the arguments num.ids,
num.games, and num.periods can be used if no data is available.

strategies: a list of strategies. Each element if the list must be an object of
class stratEst.strategy.

shares: a numeric vector of strategy shares. The order of the elements
corresponds to the order in strategies. NA values are not al-
lowed. Use a list of numeric vectors if data has more than one
sample and shares are sample specific.

32 Strategy Estimation in R

coefficients: a matrix of regression coefficients. Column names correspond
to the names of the strategies, row names to the names of the
covariates.

covariate.mat: a matrix with the covariates in columns. The column names
of the matrix indicate the names of the covariates. The matrix
must have as many rows as there are individuals.

num.ids: an integer. The number of individuals. Default is 100.

num.games: an integer. The number of games. Default is 5.

num.periods: a vector of integers with as many elements num.games. The
elements specify the number of periods in each game. Default
(NULL) means 5 periods in each game.

fixed.assignment: a logical value. If FALSE individuals use potentially different
strategies in each each game. If TRUE, individuals use the same
strategy in each game. Default is FALSE.

input.na: a logical value. If FALSE an input value is randomly selected for
the first period. Default is FALSE.

sample.id: a character string indicating the name of the variable which
identifies the samples in data. Individual observations must be
nested in samples. Default is NULL.

Output
A stratEst.data object. A data frame in the long format with the following variables:

id: the variable that identifies observations of the same individual.

game: the variable that identifies observations of the same game.

period: the period of the game.

choice: the discrete choices.

input: the inputs.

sample: the sample of the individual.

strategy: the strategy of the individual.

8.5. stratEst.test()

The test function of the package. The syntax of the function call is:

R> stratEst.test(model, par = c("shares", "probs", "trembles",
+ "coefficients"), values = 0,
+ alternative = "two.sided", digits = 4)

Fabian Dvorak 33

Input

model: a fitted model of class stratEst.model.

par: a character vector. The class of model parameters to be tested.
The default is to test all classes of model parameters.

values: a numeric vector. The values the parameter estimates are com-
pared to. Default is zero.

alternative: a character string. The alternative hypothesis. Options are
"two.sided", "greater" or "less". Default is "two.sided".

digits: an integer. The number of digits of the result.

Output

A data.frame with one row for each tested parameter and 6 variables:

estimate: the parameter estimate.

diff: the difference between the estimated parameter and the numeric
value (if supplied).

std.error: the standard error of the estimated parameter.

t.value: the t statistic.

res.degrees: the residual degrees of freedom of the model.

p.value: the p value of the t statistic.

8.6. stratEst.check()

The function for model checking of the package. The syntax of the function call is:

R> stratEst.check(model, chi.tests = F, bs.samples = 100, verbose = FALSE)

Input

model: a fitted model of class stratEst.model.

chi.tests: a logical. If TRUE chi square tests of global and local model fit
are performed. Default is FALSE.

bs.samples: an integer. The number of parametric bootstrap samples for the
chi square tests. Default is 100.

34 Strategy Estimation in R

verbose: a logical, if TRUE messages of the checking process are printed
to the console. Default is FALSE.

Output

A list of check results with the following elements:

fit: a matrix. Contains the log likelihood, the number of free model
parameters, and the value of the three information criteria.

chi.global: a matrix. The results of the chi square test for global model fit.

chi.local: a matrix. The results of the chi square test for local model fit.

Computational details
The results in this paper were obtained using R 4.0.0 with the stratEst 1.0.0 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.

Acknowledgments
I would like to thank Yongping Bao, Yves Breitmoser, Karsten Donnay, Urs Fischbacher,
Konstantin Käppner and Susumu Shikano for helpful comments. I am particularly grateful
to Sebastian Fehrler for many inspiring conversations. All remaining errors are my own.

References

Agresti A (2003). Logit Models for Multinomial Responses, chapter 7, pp. 267–
313. Wiley-Blackwell. ISBN 9780471249689. doi:10.1002/0471249688.ch7.
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471249688.ch7, URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/0471249688.ch7.

Akaike H (1973). Second International Symposium on Information Theory, chapter Infor-
mation Theory and an Extension of the Maximum Likelihood Principle, pp. 267–281.
Akademiai Kiado, Budapest, Hungary.

Aoyagi M, Bhaskar V, Frechette GR (2019). “The Impact of Monitoring in Infinitely Repeated
Games: Perfect, Public, and Private.” American Economic Journal: Microeconomics,
11(1), 1–43. doi:10.1257/mic.20160304. URL https://www.aeaweb.org/articles?
id=10.1257/mic.20160304.

Arechar AA, Dreber A, Fudenberg D, Rand DG (2017). “I’m just a Soul whose Intentions
are Good?: The Role of Communication in Noisy Repeated Games.” Games and Economic
Behavior, 104, 726–743. ISSN 10902473. doi:10.1016/j.geb.2017.06.013. URL http:
//dx.doi.org/10.1016/j.geb.2017.06.013.

https://CRAN.R-project.org/
http://dx.doi.org/10.1002/0471249688.ch7
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471249688.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471249688.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471249688.ch7
http://dx.doi.org/10.1257/mic.20160304
https://www.aeaweb.org/articles?id=10.1257/mic.20160304
https://www.aeaweb.org/articles?id=10.1257/mic.20160304
http://dx.doi.org/10.1016/j.geb.2017.06.013
http://dx.doi.org/10.1016/j.geb.2017.06.013
http://dx.doi.org/10.1016/j.geb.2017.06.013

Fabian Dvorak 35

Bandeen-Roche K, Miglioretti DL, Zeger SL, Rathouz PJ (1997). “Latent Variable Re-
gression for Multiple Discrete Outcomes.” Journal of the American Statistical Associa-
tion, 92(440), 1375–1386. doi:10.1080/01621459.1997.10473658. https://doi.org/
10.1080/01621459.1997.10473658, URL https://doi.org/10.1080/01621459.1997.
10473658.

Beath K (2011). “randomLCA: Random Effects Latent Class Analysis.” Technical report, R
package version 0.7, URL http://CRAN.R-project.org/package=randomLCA.

Biernacki C, Celeux G, Govaert G (2000). “Assessing a Mixture Model for Clustering with the
Integrated Completed Likelihood.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22, 719–725.

Biernacki C, Celeux G, Govaert G (2003). “Choosing Starting Values for the {EM} Algorithm
for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models.” Compu-
tational Statistics & Data Analysis, 41(3âĂŞ4), 561–575. ISSN 0167-9473. doi:http:
//dx.doi.org/10.1016/S0167-9473(02)00163-9. URL http://www.sciencedirect.
com/science/article/pii/S0167947302001639.

Bolck A, Croon M, Hagenaars J (2004). “Estimating Latent Structure Models with Categor-
ical Variables: One-Step Versus Three-Step Estimators.” Political Analysis, 12(1), 3–27.
doi:10.1093/pan/mph001.

Breitmoser Y (2015). “Cooperation, but no Reciprocity: Individual Strategies in the Repeated
Prisoner’s Dilemma.” American Economic Review, 105(9), 2882–2910. ISSN 00028282.
doi:10.1257/aer.20130675.

Bull SB, Mak C, Greenwood CM (2002). “A Modified Score Function Estimator
for Multinomial Logistic Regression in Small Samples.” Computational Statistics &
Data Analysis, 39(1), 57 – 74. ISSN 0167-9473. doi:https://doi.org/10.1016/
S0167-9473(01)00048-2. URL http://www.sciencedirect.com/science/article/
pii/S0167947301000482.

Camera G, Casari M, Bigoni M (2012). “Cooperative Strategies in Anonymous Economies:
An Experiment.” Games and Economic Behavior, 75(2), 570–586. ISSN 08998256. doi:
10.1016/j.geb.2012.02.009.

Dal Bó P, Fréchette GR (2011). “The Evolution of Cooperation in Infinitely Repeated Games:
Experimental Evidence.” American Economic Review, 101(1), 411–429.

Dayton CM, Macready GB (1988). “Concomitant-Variable Latent-Class Models.” Journal of
the American Statistical Association, 83(401), 173–178.

Dempster A, Laird N, Rubin DB (1977). “Maximum Likelihood from Incomplete Data via
the EM Algorithm.” Journal of the Royal Statistical Society Series B, 39(1), 1–38. ISSN
00359246. doi:http://dx.doi.org/10.2307/2984875. 0710.5696v2, URL http://www.
jstor.org/stable/10.2307/2984875.

Dvorak F, Fehrler S (2018). “Negotiating Cooperation under Uncertainty: Communication
in Noisy, Indefinitely Repeated Interactions.” IZA Working Paper No. 11897.

http://dx.doi.org/10.1080/01621459.1997.10473658
https://doi.org/10.1080/01621459.1997.10473658
https://doi.org/10.1080/01621459.1997.10473658
https://doi.org/10.1080/01621459.1997.10473658
https://doi.org/10.1080/01621459.1997.10473658
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-9473(02)00163-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0167-9473(02)00163-9
http://www.sciencedirect.com/science/article/pii/S0167947302001639
http://www.sciencedirect.com/science/article/pii/S0167947302001639
http://dx.doi.org/10.1093/pan/mph001
http://dx.doi.org/10.1257/aer.20130675
http://dx.doi.org/https://doi.org/10.1016/S0167-9473(01)00048-2
http://dx.doi.org/https://doi.org/10.1016/S0167-9473(01)00048-2
http://www.sciencedirect.com/science/article/pii/S0167947301000482
http://www.sciencedirect.com/science/article/pii/S0167947301000482
http://dx.doi.org/10.1016/j.geb.2012.02.009
http://dx.doi.org/10.1016/j.geb.2012.02.009
http://dx.doi.org/http://dx.doi.org/10.2307/2984875
0710.5696v2
http://www.jstor.org/stable/10.2307/2984875
http://www.jstor.org/stable/10.2307/2984875

36 Strategy Estimation in R

Dvorak F, Fischbacher U, Schmelz K (2020). “Incentives for Conformity and Anticonformity.”
Technical report, TWI Working Paper Series.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal
of Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08. URL http://www.
jstatsoft.org/v40/i08/.

Efron B, Tibshirani RJ (1993). An Introduction to the Bootstrap. Chapman & Hall/CRC.
Boca Raton, FL.

Embrey M, Frechette GR, Stacchetti E (2013). “An Experimental Study of Imperfect Public
Monitoring: Efficiency Versus Renegotiation-Proofness.” SSRN Working Paper. doi:10.
2139/ssrn.2346751. URL https://ssrn.com/abstract=2346751.

Embrey M, Frechette GR, Yuksel S (2017). “Cooperation in the Finitely Repeated Prison-
erŠs Dilemma.” The Quarterly Journal of Economics, 133(1), 509–551. ISSN 0033-5533.
doi:10.1093/qje/qjx033. https://academic.oup.com/qje/article-pdf/133/1/509/
30636531/qjx033.pdf, URL https://doi.org/10.1093/qje/qjx033.

Firth D (1993). “Bias Reduction of Maximum Likelihood Estimates.” Biometrika, 80(1),
27–38. ISSN 00063444. URL http://www.jstor.org/stable/2336755.

Frechette GR, Yuksel S (2017). “Infinitely repeated games in the laboratory: four perspectives
on discounting and random termination.” Exp Econ, 20(2), 279 – 308. doi:10.1007/
s10683-016-9494-z. URL https://doi.org/10.1007/s10683-016-9494-z.

Fudenberg D, Rand DG, Dreber A (2012). “Slow to Anger and Fast to Forgive: Cooperation
in an Uncertain World.” American Economic Review, 102(2), 720–749. ISSN 0002-8282.
doi:10.1257/aer.102.2.720.

Kaufman L, Rousseeuw PJ (1990). Finding Groups in Data. An Introduction to Cluster
Analysis. Wiley Series in Probability and Mathematical Statistics. Applied Probability and
Statistics. John Wiley & Sons, Inc., New York.

Lazarsfeld PF (1950). Measurement and Prediction, chapter The Logical and Mathematical
Foundations of Latent Structure Analysis, pp. 362–412. John Wiley & Sons, Inc., New
York.

Leisch F (2002). Compstat., chapter Sweave: Dynamic Generation of Statistical Reports
Using Literate Data Analysis. Physica, Heidelberg.

Leisch F (2004). “FlexMix: A General Framework for Finite Mixture Models and Latent
Class Regression in R.” Journal of Statistical Software, 11(8).

Linzer DA, Lewis JB (2011). “poLCA: An R Package for Polytomous Variable Latent Class
Analysis.” Journal of Statistical Software, 42(10).

McLachlan G, Peel D (2005). Finite Mixture Models. John Wiley & Sons, Inc., New York.
doi:10.1002/0471721182.

Mehrabian A, Stefl CA (1995). “Basic Temperament Components of Loneliness, Shyness,
and Conformity.” Social Behavior and Personality, 23(3), 253–263. ISSN 0301-2212. doi:
doi:10.2224/sbp.1995.23.3.253.

http://dx.doi.org/10.18637/jss.v040.i08
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.2139/ssrn.2346751
http://dx.doi.org/10.2139/ssrn.2346751
https://ssrn.com/abstract=2346751
http://dx.doi.org/10.1093/qje/qjx033
https://academic.oup.com/qje/article-pdf/133/1/509/30636531/qjx033.pdf
https://academic.oup.com/qje/article-pdf/133/1/509/30636531/qjx033.pdf
https://doi.org/10.1093/qje/qjx033
http://www.jstor.org/stable/2336755
http://dx.doi.org/10.1007/s10683-016-9494-z
http://dx.doi.org/10.1007/s10683-016-9494-z
https://doi.org/10.1007/s10683-016-9494-z
http://dx.doi.org/10.1257/aer.102.2.720
http://dx.doi.org/10.1002/0471721182
http://dx.doi.org/doi:10.2224/sbp.1995.23.3.253
http://dx.doi.org/doi:10.2224/sbp.1995.23.3.253

Fabian Dvorak 37

Meilijson I (1989). “A Fast Improvement to the EM Algorithm on its Own Terms.” Journal of
the Royal Statistical Society B, 51(1), 127–138. ISSN 00359246. URL http://www.jstor.
org/stable/2345847.

R Development Core Team (2008). “R: A Language and Environment for Statistical Com-
puting.” Technical report, R Foundation for Statistical Computing. URL http://www.
R-project.org.

Sanderson C, Curtin R (2016). “Armadillo: A Template-Based C++ Library for Linear
Algebra.” Journal of Open Source Software, 1, 26.

Schwarz G (1978). “Estimating the Dimension of a Model.” Ann. Statist., 6(2), 461–464.
doi:10.1214/aos/1176344136. URL https://doi.org/10.1214/aos/1176344136.

Selten R (1975). “Reexamination of the Perfectness Concept for Equilibrium Points in Ex-
tensive Games.” International Journal of Game Theory, 4(1), 25–55. ISSN 1432-1270.
doi:10.1007/BF01766400. URL https://doi.org/10.1007/BF01766400.

van Kollenburg GH, Mulder J, Vermunt JK (2015). “Assessing Model Fit in Latent
Class Analysis When Asymptotics Do Not Hold.” Methodology, 11(2), 65–79. doi:
10.1027/1614-2241/a000093. https://doi.org/10.1027/1614-2241/a000093, URL
https://doi.org/10.1027/1614-2241/a000093.

Wang Z, Xu B, Zhou HJ (2014). “Social Cycling and Conditional Responses in the Rock-
Paper-Scissors Game.” Scientific Reports, 4(1), 2045–2322. doi:10.1038/srep05830. URL
https://doi.org/10.1038/srep05830.

Wickham H (2011). “testthat: Get Started with Testing.” The R Journal, 3, 5–10. URL
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf.

Wickham H, Danenberg P, Csardi G, Eugster M (2020a). roxygen2: In-Line Documentation
for R. R package version 7.1.0, URL https://CRAN.R-project.org/package=roxygen2.

Wickham H, Hester J, Chang W (2020b). devtools: Tools to Make Developing R Packages
Easier. R package version 2.3.0, URL https://CRAN.R-project.org/package=devtools.

Affiliation:
Fabian Dvorak
Centre for the Advanced Study of Collective Behaviour
and
Chair of Applied Research in Economics
Universität Konstanz
Box 146
D-78457, Konstanz
Germany
E-mail: fabian.dvorak@uni-konstanz.de
URL: http://fabian-dvorak.com/

http://www.jstor.org/stable/2345847
http://www.jstor.org/stable/2345847
http://www.R-project.org.
http://www.R-project.org.
http://dx.doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1007/BF01766400
https://doi.org/10.1007/BF01766400
http://dx.doi.org/10.1027/1614-2241/a000093
http://dx.doi.org/10.1027/1614-2241/a000093
https://doi.org/10.1027/1614-2241/a000093
https://doi.org/10.1027/1614-2241/a000093
http://dx.doi.org/10.1038/srep05830
https://doi.org/10.1038/srep05830
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://CRAN.R-project.org/package=roxygen2
https://CRAN.R-project.org/package=devtools
mailto:fabian.dvorak@uni-konstanz.de
http://fabian-dvorak.com/

	Introduction
	Terminology and model definition
	The basic strategy estimation model
	The model with covariates

	Estimation
	Algorithm
	Parameter maximization
	Strategy shares
	Choice probabilities
	Regression coefficients

	Standard errors
	Strategy shares
	Choice probabilities
	Regression coefficients
	Bootstrapped standard errors

	Model fit
	Information criteria
	Chi square test of global fit
	Chi square test of local fit

	Model selection
	Parameter fixation
	Parameter restrictions
	Restricted parameter estimation
	Restricted standard errors

	Parameter selection
	Strategy selection

	Simulated data
	Examples
	Dal Bo and Frechette, 2011
	Fudenberg, Rand and Dreber, 2011
	Dvorak, Fischbacher and Schmelz, 2020

	Function documentation
	stratEst.strategy()
	Inputs
	Outputs

	stratEst.data()
	Input
	Output

	stratEst.model()
	Input
	Output

	stratEst.simulate()
	Input
	Output

	stratEst.test()
	Input
	Output

	stratEst.check()
	Input
	Output

