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1 Introduction

Many social and economic relationships are characterized by repeated interactions

in which the behavior of partners is observable only with noise. Two examples are

teamwork arrangements in which workers repeatedly produce goods for each other,

and cartels with repeated price-setting by its members. How much effort a worker

exerts in the production of the good cannot be observed directly but only inferred

from the good itself – a noisy signal (Sekiguchi, 1997; Compte and Postlewaite,

2015). Likewise, whether or not other cartel members stick to a collusive agreement

cannot be observed directly but only inferred from noisy signals like own sales in

Stigler’s (1964) or the market price in Green and Porter’s (1984) seminal treatments

of oligopolies. The former is the classic example for imperfect private monitoring –

own sales can be observed only by the firm itself; the latter is the classic example

for imperfect public monitoring, the market price being publicly observable.

Sustaining cooperation under imperfect monitoring has been the central topic in

the theory of infinitely repeated games for the last three decades. This literature

identifies communication as a key factor (see, e.g., Matsushima, 1991; Compte, 1998;

Obara, 2009; Awaya and Krishna, 2016). However, empirical evidence that allows

to answer the question if communication is particularly important under imperfect

monitoring compared to perfect monitoring is so far missing in the literature. This is

unfortunate not only from a scientific but also from a policy perspective as evidence

of cartel communication is an important source of evidence for antitrust authorities.

Hence, it is important to know if communication is necessary and, if so, how much of it

is needed to sustain a collusive agreement. Several experimental studies with perfect

monitoring have demonstrated that the mere existence of cooperative equilibria is

by no means sufficient for the emergence of cooperation (see, e.g., Dal Bó, 2005;

Blonski et al., 2011; Breitmoser, 2015; Dal Bó and Fréchette, 2018). Therefore, it is

important to learn from data and not only from theory how communication affects

cooperation and how this depends on the monitoring structure. As many important

variables, such as private signals and communications, cannot be observed in the

field, we design a laboratory experiment, which allows us to study this interaction

in a tightly controlled setting.1

Our laboratory experiment follows a (3 × 3) design varying both the com-

munication and the monitoring structure of the game. We study the following

communication structures: (i) no communication; (ii) pre-play communication,

1Most cartel communication is not documented as such documents could be used as evidence in
legal cases. See Genesove and Mullin (2001), Andersson and Wengström (2007), and Cooper and
Kühn (2014) for further discussion and examples of cartel cases.
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where subjects can chat with their partner before the first round of an interaction;

and (iii) repeated communication, where subjects can chat with their partner before

every round of the interaction. The second treatment variable is the monitoring

structure. We study (i) perfect monitoring, (ii) imperfect public montoring, and

(iii) imperfect private monitoring. The game that we ask subjects to play is an

indefinitely repeated noisy prisoner’s dilemma, similar to that studied theoretically

by Sekiguchi (1997) and Compte and Postlewaite (2015), and experimentally, but

without communication, by Aoyagi et al. (2018). In this variant of the prisoner’s

dilemma, signals are independent conditional on actions. Payoffs depend on own

actions and received signals, which are noisy reflections of the other player’s actions.

Under perfect monitoring, signals and actions are observed; under imperfect public

monitoring, sent and received signals are observed; and under private monitoring,

only the received signals are observed.

In their comprehensive review of experimental studies of repeated games without

communication, Dal Bó and Fréchette (2018) show that the robustness of cooperation

to strategic uncertainty is a good predictor for cooperation under perfect monitoring

(see also Blonski et al., 2011; Breitmoser, 2015). We extend their measure of

robustness to strategic uncertainty – the basin of attraction for playing a defective

strategy – to the imperfect monitoring cases. According to this measure, robustness

to strategic uncertainty is low in all of our treatments and lower in the treatments with

imperfect monitoring than in those with perfect monitoring. Pre-play communication

might reduce strategic uncertainty and thus increase cooperation rates. Under

imperfect monitoring, full cooperation is not possible in equilibrium and simple

grim-trigger strategies lead to lower efficiency than more lenient and forgiving

strategies. Bad signals can also occur after a history of full cooperation, which adds

another type of uncertainty, as the history of play becomes becomes uncertain. If

communication makes subjects’ strategies more lenient and forgiving, this could

boost cooperation rates. As we will see, the opportunity to communicate after the

occurrence of a bad signal is important in this respect.

Our main results are the following: Cooperation rates are much higher in all pre-

play communication treatments than in the no-communication treatments (Result

1). With repeated communication, cooperation rates are high and stable under

all monitoring conditions, whereas they start high but decline rapidly over rounds

with pre-play communication when monitoring is imperfect (Result 2). As bad

signals occur with positive probability even after mutual cooperation under both

imperfect monitoring structures, subjects need to coordinate their behavior for

more contingencies than under perfect monitoring. While subjects do use pre-
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play communication to coordinate behavior (Result 3a), we also find for all three

monitoring structures that most subjects merely coordinate on mutual cooperation

in the first round. If successful, they continue to cooperate. While this is enough to

lead to stable coordination under perfect monitoring, it is not when signals are noisy.

To reduce uncertainty about the history of the game under imperfect monitoring,

subjects use repeated communication phases to exchange private information (Result

3b), and to revisit their incomplete pre-play agreements. Our subjects’ behavior

becomes more lenient and forgiving with pre-play communication, and even more so

with repeated communication, than in the absence of communication opportunities

(Result 4). These results corroborate the importance of communication for high

cooperation rates and of repeated communication for the stability of cooperation in

noisy environments.

In summary, our results suggest that communication promotes cooperation by

reducing two types of uncertainty. First, communication before the first round of the

game reduces strategic uncertainty, or more precisely, the risk of meeting another

player who follows a non-cooperative strategy in the game. Second, communication

between rounds reduces uncertainty about the history of play, which stems from

the noisy signals. Participants’ play becomes more lenient and forgiving after bad

signals, which facilitates relationships with high and stable cooperation rates.

Several laboratory experiments have been conducted to explore the effects of

communication and test predictions from renegotiation-proofness refinements (Pearce,

1987; Farrell and Maskin, 1989) in experiments without noise (Andersson and

Wengström, 2012; Fonseca and Normann, 2012; Cooper and Kühn, 2014) or imperfect

public monitoring (Embrey et al., 2013; Arechar et al., 2017). While they offer

important insights, these experiments do not allow for a comparison of the use and

the effects of communication across monitoring structures.2 Moreover, we are not

aware of any previous empirical study of communication under private monitoring.

Given the important role that communication plays for this monitoring structure in

the theoretical literature, this is quite surprising. Our study makes a first step to fill

these gaps, and provides novel insights into how communication reduces uncertainty

2Camera et al. (2013) study communication in a setting with random re-matching within groups
after every round of the repeated game. Kamei and Nesterov (2020) study endogenous reports
of opponents’ choices after a supergame to their next interactions partners. Wilson and Vespa
(2020) study an indefinitely repeated version of a sender-receiver game (Crawford and Sobel, 1982).
Another string of recent studies focus on communication and cooperation in various one-shot or
finitely repeated games (Charness and Dufwenberg, 2006, 2010; Utikal, 2012; Fischbacher and
Utikal, 2013; Camera et al., 2013; Cooper and Kühn, 2014; Cason and Mui, 2014, 2015; Landeo and
Spier, 2015; Wang and Houser, 2019). The experimental literature on indefinitely repeated games
with imperfect monitoring but without communication further includes the papers by Aoyagi and
Fréchette (2009) and Fudenberg et al. (2012), who study public monitoring.
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under all three monitoring structures.

The rest of the paper is structured as follows. In the next section, we present

the game, the experimental design, the theoretical background and our research

questions. We turn to the experimental results in Section 3. In Section 4, we discuss

our key findings, before we state our conclusions in Section 5.

2 Theoretical Background and Experimental Design

2.1 Set-up

In the indefinitely repeated noisy prisoner’s dilemma, two players interact with each

other in indefinitely many rounds of an interaction, henceforth called a supergame.

Let δ denote the fixed continuation probability after any given round. In every

round, each of the two players can choose between two actions, C or D. After both

players have chosen an action a ∈ {C,D}, a noisy process translates both actions

into conditionally independent signals. Each signal ω ∈ {c, d} corresponds to the

chosen action with probability (1− ϵ). With probability ϵ an error occurs and the

action is translated into the wrong signal (C to d and D to c). All aspects of this

process, the conditional independence of signals as well as the probability of an

error are common knowledge. The payoff πi of player i from the current round is

defined by player i’s own action ai and the signal of the other player’s action ω−i.
3

The left panel of Figure 1 shows the normalized expected stage-game payoffs of

action profiles which take the noise into account. The upper right panel of Figure 1

shows the payoff in experimental currency units that a subject receives in a round

of a supergame as a function of the action and the signal received about the other

player’s action. We use the same payoff structure, the same continuation probability

of δ = 0.8 and the same error probability of ϵ = 0.1 in all treatments. These values

translate into expected stage-game payoffs for actions depicted in the lower right

panel, which can be normalized by substracting 19 from all payoffs and then dividing

them by 8. Hence, g = 1 and l = 2 in the experiment.

With g > 0 and l > 0 the stage game has the form of a prisoner’s dilemma. The

restriction 1 + l > g prevents that coordinated switching between cooperation and

defection yields a greater expected payoff than mutual cooperation. Both conditions

are fulfilled with our parameters. We consider three different monitoring structures.

3This might reflect the interaction of two workers where each worker exerts low or high effort on
the production of a good for the other worker, and where whether the good is useful for the partner
or not is a noisy signal of effort (Sekiguchi, 1997). For an alternative but similar interpretation,
see Compte and Postlewaite (2015).
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Under perfect monitoring, each player i is informed about the actions {ai, a−i} and

the signals {ωi, ω−i}. Under imperfect public monitoring (Green and Porter, 1984),

players cannot observe the action of the other player and the information set reduces

to {ai, ωi, ω−i}. Under imperfect private monitoring (Stigler, 1964), players also

remain uninformed about ωi, the signal the other player receives, as the information

set reduces to {ai, ω−i}. In addition to the three different monitoring conditions, we

consider three different communication conditions. The benchmark case is that of no

communication. In the pre-play communication condition, players can communicate

before the first round of a supergame. In the repeated communication condition,

players additionally enter a communication stage before each of the following rounds.

Figure 1: The Stage-Game

C D

C 1,1 −l,1+g

D 1+g,−l 0,0

c d

C 30 0

D 37 17

C D

C 27,27 3,35

D 35,3 19,19

Notes: The payoffs depicted in the right panel are in experimental currency units. The exchange rate was 50

ECU = EUR 1. Subjects saw both representations of the stage-game at all times when making their decisions.

We choose open chat as the mode of communication to avoid reducing the potential

roles that communication might play. Free-form communication is also the most

natural type and allows us to study its use and content.

2.2 Procedural Details

To keep the length of the supergames constant between treatments, we generate two

sequences of supergames beforehand using a series of random numbers to determine

the length of each supergame.4 Both sequences are implemented for all treatments in

4We use the Stata random number generator with seeds 1 and 2 to create two series of uniformly
distributed random numbers between 0 and 1. The first supergame had x rounds if the xth random
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different sessions. At the end of every round of a supergame, subjects receive feedback

about their earnings and additional information which allows them to (imperfectly)

monitor the other player’s decisions. The realized random number, which determines

whether the supergame continues or not, is also displayed at the end of each round,

and could thus be used as a public randomization device. To allow for learning,

each participant in our experiment plays seven supergames with different partners.

The matching proceeds as follows: we divide the subjects of an experimental session

into matching groups of 8–12 subjects. For the first supergame, each subject is

then randomly matched with another participant from their matching group. After

the termination of a supergame, participants are re-matched with a new partner

from their matching group who they did not interact with before. Subjects were

informed about this matching procedure. In the communication treatments, subjects

can exchange messages via a chat box. In the pre-play communication condition,

the chat can be used by both players of the current match to exchange messages

for 120 seconds. In the repeated communication condition, players additionally

enter a communication stage before each of the following rounds where they can

exchange messages for 40 seconds. Before the start of all treatments, participants

had to answer control questions to check their understanding of the instructions (see

Appendix D).

We collected data from three matching groups per sequence-treatment combina-

tion, that is from six matching groups per treatment. A total of 458 participants

(average age 22, 60% female) participated between January and April of 2016 in

the 24 sessions of our experiment at the LakeLab of the University of Konstanz.5

The average earning was EUR 18, and the session length 75–90 minutes. Table

1 summarizes the distribution of sessions, subjects, and matching groups across

experimental treatments and depicts the average size of a matching group as well as

the average length of the supergames.

number was less than or equal to 0.2 and all previous numbers were greater than 0.2. Then the first
x random numbers were deleted and the following numbers determined the length of the second
supergame, and so forth. We used the two series to determine the lengths of seven supergames
each. The length of the two resulting sequences of supergames are: SQ1 (11 3 5 1 5 2 11) and SQ2
(2 5 5 7 13 4 4). Average supergame lengths were moderately longer than the expected length of
five of the underlying geometric distribution (SQ1: 5.4; SQ2: 5.7). Random termination is the
most widely used way of implementing infinitely repeated games in the lab. See Fréchette and
Yuksel (2017) for a study of other implementation methods.

5The experiment was programmed in z-Tree (Fischbacher, 2007) and subjects were recruited
via ORSEE (Greiner, 2015).
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Table 1: Summary Statistics for the Experimental Treatments

Perfect Public Private

No Pre Rep No Pre Rep No Pre Rep

Sessions 2 2 2 3 3 4 2 3 3
Matching groups 6 6 6 6 6 6 6 6 6
Subjects 52 54 54 48 52 50 48 50 50
Mean group size 8.7 9.0 9.0 8.0 8.7 8.3 8.0 8.3 8.3
Mean supergame length 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6

Notes: Mean group size indicates the average number of subjects who formed a matching group. The modal size

of a matching group was eight (44 groups). Seven groups were of size 10 and three of size 12. Subjects did not

know the exact size of their matching group. Mean supergame length indicates the average number of rounds of

all supergames played in a treatment.

2.3 Equilibria and Strategic Uncertainty

Equilibria Table 2 gives an overview of the types of cooperative equilibria that

have been described in the literature and that exist for our experimental parameters.6

Table 2: Cooperative Equilibria and Stability

repeated pre-play no

private TT,BB,T1BF BB,T1BF BB,T1BF

public PS-SPE,BB,T1BF PS-SPE,BB,T1BF PS-SPE,BB,T1BF

perfect PS-SPE,BB,M1BF PS-SPE,BB,M1BF PS-SPE,BB,M1BF

Notes: PS-SPE: pure-strategy SPE, BB: belief-based (mixed-strategy) equilibria, M1BF: memory-one belief-free

equilibria (in behavior strategies), T1BF: threshold memory-one belief-free equilibria, TT: truth-telling equilibria.

The equilibria in boldface are evolutionarily-stable equilibria (Heller, 2017).

The conditions for the existence of cooperative pure-strategy subgame-perfect equilib-

ria (PS-SPE) under perfect and imperfect public monitoring are well-known results of

the theoretical literature (see, e.g., Mailath and Samuelson, 2006). With perfect mon-

itoring, players can condition on the intended actions and support full cooperation

using pure strategies, such as the grim-trigger strategy, if the continuation probability

δ is greater or equal to δSPE = g
1+g

. With public monitoring and strategies condi-

6Trivially, mutual defection in every round of the repeated game is an equilibrium under all
three monitoring conditions.
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tioning only on the public signals, the stricter condition δSPE = g
1−ϵ+(1−ϵ)2g applies.

Both conditions are fulfilled in our experiment, as δ = 0.8 > 1
1−0.1+(1−0.1)2

> 1
1+1

.

The second condition implies reduced efficiency under imperfect public monitoring

since defection occurs with positive probability on the equilibrium path. Lenient

and (or) forgiving strategies, which do not start punishment immediately after the

first bad signal or punish for fewer rounds as compared to the grim-trigger strategy,

counteract the efficiency loss caused by the monitoring imperfections.

With private monitoring, cooperation cannot be supported by a subgame-perfect

equilibrium based on pure strategies and players have to rely on mixed (Bhaskar and

Obara, 2002; Sekiguchi, 1997) or behavior strategies (Ely and Välimäki, 2002; Ely

et al., 2005; Piccione, 2002), giving rise to belief-based (BB) or belief-free equilibria

(BF).7 Players, who follow a behavior strategy, randomize between actions (C and

D) in each round. The probabilities with which actions are chosen depend on the

history. A strategy that only considers the latest observed signals and actions is

called a memory-one belief-free (M1BF) strategy. The theoretical literature has

largely focused on this type of behavior strategy (Ely and Välimäki, 2002; Piccione,

2002; Heller, 2017). An M1BF strategy under perfect monitoring would, for example,

specify the five probabilities to cooperate (i) at the beginning of the supergame (after

the empty history), (ii) after mutual cooperation CC in the previous round, (iii) after

mutual defection DD, (iv) after CD and (v) after DC.8,9 For the existence of M1BF

equilibria, the continuation probability δ has to be greater or equal to a threshold

δBF . If δ > δBF a continuum of equilibria exist. The cooperation probabilities (ii)-(v)

are exactly pinned down if δ = δBF . The cooperation probability (i) at the start of

the game is always a free parameter. We call the equilibria with the cooperation

pattern at the threshold T1BF equilibria. The resulting T1BF equilibrium strategies

are a lenient version of tit-for-tat with cooperation probabilities σ = (σ∅, 1, 0.5, 1, 0)

conditional on the memory-one action-signal histories (σ∅, Cc, Cd,Dc,Dd).

7Under private monitoring, players lack a public history of play to coordinate behavior in such
a way that defection is the mutual best-response after a defection signal. Instead, a player who
believes that the other player is still in the cooperative state and obtains a defection signal would
want to ignore the defection signal to keep the partner in the cooperative state. The incentive to
ignore defection signals undermines the necessary responsiveness of the cooperative strategy to
defection.

8Under imperfect monitoring, the five states upon which the cooperation probabilities depend
would be the first round and the four different possible signal–action combinations of the previous
round. Under public-monitoring, M1BF could condition either on the public signals or the private
signal, whereas under private monitoring only the latter is possible.

9Semi-grim strategies are a sub-class of M1BF strategies with the property that the probabilities
of cooperation after CD and DC are the same. Breitmoser (2015) provides empirical evidence
that under perfect monitoring, behavior on both the aggregate, and the individual level is well
summarized by semi-grim strategies.

8



With our experimental parameters, cooperative mixed-strategy and belief-free

equilibria exist under all three monitoring conditions. The parameters rule out that

the set of M1BF equilibria is different between public and private monitoring since

no M1BF equilibria exists in which strategies condition on the public signals, and

so only M1BF which condition on the private signal (and the player’s own action)

can be played in equilibrium. To pinpoint the behavior of M1BF strategies, we set

δ = δBF .

When players can communicate repeatedly under private monitoring, private

signals can be reported, which creates a quasi-public history and thereby allows

for simpler and more stable equilibria (Heller, 2017). Such truth-telling equilibria

(TT) can exist if certain revelation constraints are fulfilled (Compte, 1998). The

punishment stage is constructed in a way that makes every player indifferent between

truthfully reporting the private signal and misreporting or staying silent. This

requires that no player benefits or suffers from entering the punishment phase in

which the other player is punished. The stability of these equilibria stems from the

fact that they provide strict incentives for cooperation, whereas the other equilibrium

constructions by Sekiguchi (1997), Piccione (2002), or Ely and Välimäki (2002) do

not (see Heller, 2017).10 In the experiment, we are interested in whether subjects

use communication to transform the game with private monitoring into one with

quasi-public signals. Our parameters assure that such truth-telling equilibria exist.

They also assure the existence of renegotiation-proof cooperative equilibria under

perfect and public monitoring.11

The equilibria in boldface Table 2 are evolutionarily-stable equilibria (Heller,

2017). Note that there are no stable cooperative equilibria without repeated com-

munication under private monitoring. This is different for the other two monitoring

conditions and the reason for the special role that communication plays under private

monitoring in the theoretical literature.

Strategic Uncertainty Experimental evidence suggests that the SPE-existence

conditions are necessary but insufficient to observe high levels of cooperation in

the indefinitely repeated prisoner’s dilemma with perfect monitoring (see Dal Bó

10If signals are correlated, which is not the case in our set-up, truthful communication equilibria
with strict revelation constraints can be constructed (Kandori and Matsushima, 1998), and higher
levels of efficiency might be achievable by exploiting the informational content of the correlation
(Awaya and Krishna, 2016). Awaya and Krishna (2016) study a set-up with a fixed discount rate,
whereas other studies have focused on proving Folk theorems (Ben-Porath and Kahneman, 1996;
Compte, 1998; Kandori and Matsushima, 1998; Obara, 2009).

11In Appendix A, we provide the technical details behind the results in this section. We derive
the δBF threshold and present a truth-telling equilibrium for the private monitoring as well as
renegotiation-proof equilibria for the perfect and public monitoring conditions.
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and Fréchette, 2018). An obstacle for the emergence of cooperation is that mutual

defection remains an equilibrium of the repeated game when cooperative equilibria

exist. Without the possibility to coordinate strategies, the uncertainty about

the strategy choice of the other player makes cooperation risky. Dal Bó and

Fréchette (2011) propose the basin of attraction of defection (BAD) as a predictor

for cooperation. In a mixed population of grim-trigger (GRIM) and always-defect

(ALLD) players, the BAD is defined as the share of GRIM which makes players

indifferent between the two strategies.

In contrast to the SPE condition, the BAD also takes the sucker payoff −l into
account. The BAD is inversely related to the frequency of cooperation observed in

laboratory experiments with perfect monitoring (Dal Bó and Fréchette, 2018).12

The role of strategic uncertainty for the emergence of cooperation under imperfect

monitoring is not well understood. We derive BADs under public and private

monitoring. For this purpose, we use variants of GRIM that are very robust to

strategic uncertainty as they defect forever after a bad signal (see Subsection A.1

in the appendix). Lenient or forgiving versions of GRIM are more vulnerable to

defection and result in higher values of the BAD. This highlights the trade-off

between the efficiency of cooperative strategies and their robustness to strategic

uncertainty under imperfect monitoring. The BADs under public and private

monitoring suggest that, in the frequently studied cases g = l and 1 + g = l (as

in the experiment), the negative impact of strategic uncertainty on cooperation is

amplified under imperfect monitoring. With our experimental parameters, the BAD

is 0.4 under perfect monitoring 0.76 under imperfect public and 0.77 under imperfect

private monitoring.

We expect low levels of cooperation under imperfect monitoring and a slightly

higher but still low level under perfect monitoring. These expectations are formed

on the basis of our analysis of the BAD and the cooperation rates in other studies

with different levels of BAD as reviewed by Dal Bó and Fréchette (2018). This leaves

scope for higher cooperation levels in the communication treatments.13

12Blonski et al. (2011) use an axiomatic approach to derive a critical value of δ for the emergence
of cooperation which is also related to strategic uncertainty. This δ-threshold turns out to be the
value of δ that makes cooperation risk-dominant in the sense of Harsanyi and Selten (1988).

13Our no-communication treatments complement the treatments of Aoyagi et al. (2018) where
the BAD takes lower values of 0.03 (0.06), 0.15 (0.53), 0.13 (0.43) for perfect, public, private
monitoring, in their low (high) noise treatment, respectively.
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2.4 Research Questions and Predictions

We state three main research questions. As we explain below, we expect different

answers to them for the three monitoring regimes based on the different existing

sets of equilibria and their complexity.

Question 1: Does pre-play communication increase cooperation rates?

Prediction 1: We expect a positive effect for perfect and imperfect public monitoring,

while the absence of stable cooperative equilibria under private monitoring suggests

no such effect for this monitoring condition.

According to our measure, robustness to strategic uncertainty is low in our parametriza-

tion in all three monitoring structures. However, while strategic uncertainty has been

shown to matter, at least under perfect monitoring without communication, it has

also long been recognized that communication can help coordination (e.g., Cooper

et al., 1992; Rabin, 1994; Ellingsen and Östling, 2010) and that coordination on a

cooperative equilibrium would decrease strategic uncertainty (Kartal and Müller,

2018). Therefore, we expect pre-play communication to facilitate coordination and

thereby to lower strategic uncertainty. However, while efficient equilibria are easy

to find in the perfect monitoring case, this task becomes a lot more difficult under

imperfect public monitoring. Even if players cooperate, bad signals occur with

positive probability and thus players will likely have to enter a phase of punishment

at some point. For this reason, simple punishments, such as “defect forever” after

a bad signal, are inefficient and players have to coordinate on lenient or forgiving

strategy profiles to reap a greater share of the potential gains of cooperation. With

private monitoring it becomes even more complicated. The equilibria that have been

found and analyzed in the literature are all mixed (or behavior) strategy profiles,

which are extremely hard to find, and coordination on these equilibria seems highly

unlikely (Compte and Postlewaite, 2015).

So, while we expect a positive effect of pre-play communication on cooperation

rates for perfect and public monitoring, compared to the no communication treat-

ments, the effect might be more pronounced under perfect monitoring than under

public monitoring. Under private monitoring, there might be no effect at all, given

the absence of stable cooperative equilibria without repeated communication (Heller,

2017).

Question 2: Is repeated communication important for stable cooperation over

rounds?
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Prediction 2: As stable cooperative (truth-telling) equilibria under private moni-

toring only exist with repeated communication, the positive effect should be largest

in this condition. We expect pre-play communication to be sufficient for high co-

operation under perfect monitoring and hence no additional benefit from repeated

communication. For imperfect public monitoring, the additional uncertainty about

the history of play as compared to perfect monitoring lets us expect higher and more

stable cooperation with repeated communication.

For the case of private monitoring, Heller (2017) shows that only defection can be

sustained, by any of the mechanisms discussed in the literature, as an equilibrium

that survives the evolutionary-stability criterion. He further shows that if players

can communicate repeatedly, there typically are cooperative truthful communication

equilibria, which are evolutionarily stable. In our parametrization, this is the case.

Moreover, stable cooperative equilibria also exist without communication under

public and perfect monitoring. We would thus expect a large positive effect of

repeated communication on cooperation under private monitoring, whereas high

cooperation is already achievable in stable equilibria without communication under

public and perfect monitoring. However, repeated communication might have an

additional benefit also under imperfect public monitoring where coordination on

an efficient equilibrium is more difficult than under perfect monitoring, too, and

players might need to revisit incomplete agreements after round one, in particular

when a bad signal occurs for the first time.

Question 3: What are the mechanisms through which communication affects

behavior?

Prediction 3: We expect attempts to coordinate behavior through communication

in order to reduce strategic uncertainty. For private monitoring, truthful sharing

of private information is part of any stable cooperative equilibrium; hence, we also

expect to find it in our data.

We expect pre-play communication to be used for coordination to reduce strategic

uncertainty. Under imperfect private monitoring, we expect a very specific and

important role for repeated communication. The sharing of private information

is the key role ascribed to communication under private monitoring in the recent

theoretical literature (e.g., Compte, 1998; Kandori and Matsushima, 1998; Awaya

and Krishna, 2016; Heller, 2017). The reduction of uncertainty regarding the history

of play is important in this context, which could also play a role under imperfect

public monitoring.
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3 Experimental Results

A common result in the experimental literature is that participants need a few

supergames to adapt their behavior to the experimental environment (e.g., Dal Bó,

2005). Figure 2 shows that participants generally become more cooperative over

the course of the experiment. With communication, most participants eventually

manage to coordinate on cooperation in round one under every monitoring condition.

For cooperation after round one, we observe differences in the effect of pre-

play and repeated communication that persist until the very last supergame in the

treatments with imperfect monitoring. To acknowledge learning over supergames, we

will report the main results for all supergames as well as the last three supergames,

when participants’ behavior has largely stabilized.

Figure 2: Evolution of Cooperation over Supergames
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Notes: The upper three panels display average cooperation rates in round one over the seven
supergames. The lower three panels display average cooperation rates after round one over the seven
supergames.
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3.1 Cooperation

Figures 3 and 4 present two measures of cooperation: the average frequency of

cooperation, and the average stability of cooperation over rounds. We provide

answers to Questions 1 and 2 based on these two figures. The reported p-values, pall

(pl3), result from one-sided t-tests of regression coefficients with two-way clustered

standard errors at the participant-match level (Cameron et al., 2011), including all

(the last three) supergames.

Question 1: Does pre-play communication increase cooperation rates?

Figure 3: Average Frequency of Cooperation Across Treatments
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Notes: Bars show the relative frequency of cooperation. Whiskers depict 95% confidence intervals
based on clustered standard errors of the mean (clustered on subject and match).

Figure 3 shows the average frequency of cooperation across the nine experimental

treatments. The depicted levels of cooperation mostly reflect the amount of coopera-

tion observed in the first four rounds, where each participant contributes two or three

observations depending on the length of the supergames played. The bars indicate

that the mean cooperation level in the treatments with pre-play communication is

substantially higher compared to the treatments without communication (pall < 0.01,

pl3 < 0.01). The effect of pre-play communication on the average cooperation rate

is largest under perfect monitoring. Under perfect monitoring, the average coopera-

tion rate is 53 percentage points higher with pre-play communication (66 ppt, last

three sg). Under imperfect public monitoring, the average cooperation rate is 39

percentage points higher with pre-play communication (44 ppt, last three sg). Under

imperfect private monitoring, the average cooperation rate is 44 percentage points

higher with pre-play communication (54 ppt, last three sg). Difference-in-differences
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tests indicate that the effect of pre-play communication is larger under perfect

compared to imperfect public monitoring (perfect vs. public: pall = 0.04, pl3 < 0.01;

perfect vs. private: pall < 0.12, pl3 = 0.06).

Result 1: Pre-play communication leads to a large increase in cooperation rates

under all three monitoring structures. The effect is largest under perfect monitoring.

Question 2: Is repeated communication important for stable cooperation over

rounds?

Figure 4: Stability of Cooperation over Rounds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

All Supergames

C
oo

pe
ra

tio
n

Round Round Round

Perfect Public Private

1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11

● ● ● ●
● ●

●

●
● ● ●●

●
● ●

●
● ● ●

● ● ●

●
●

● ●
● ● ●

● ● ● ●

Repeated
Pre−Play
No

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Last 3 Supergames

C
oo

pe
ra

tio
n

Round Round Round

Perfect Public Private

1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11

● ● ●
● ● ● ●

●
● ● ●

●
●

● ●
●

●
●

●
● ●

●

●
●

● ●

● ● ● ● ● ● ●

Repeated
Pre−Play
No

Notes: The graph depicts the frequency of cooperation over rounds averaged over all supergames
(top) and the last three supergames (bottom). The average number of observations per treatment
decreases from 355 (153) in round one to 77 (51) in round eleven because of the different lengths
of the supergames (see footnote 16).

Figure 3 also shows that the mean cooperation level in treatments with repeated

communication is higher compared to the treatments with pre-play communication

(perfect: pall < 0.01, pl3 = 0.02; public: pall < 0.01, pl3 < 0.01; private: pall = 0.01,
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pl3 = 0.04). The size of the effect is largest under public monitoring where the mean

cooperation level is 17 percentage points higher (19 ppt in the last three sg) with

repeated communication. Difference in differences tests indicate that the effect of

repeated communication is not significantly different under public monitoring (public

vs. perfect: pall = 0.49, pl3 = 0.34; public vs. private: pall = 0.18, pl3 = 0.14).

Figure 4 shows the mean cooperation level over rounds. The mean cooperation

level is depicted up to round 11 to assure that each participant contributes at least

one observation to every round. The slopes of the lines indicate that the decline

of cooperation over rounds varies between treatments. With communication, the

cooperation rate in round one is around 85% (95% in the last three supergames)

and does not differ much between the monitoring structures. In the treatments with

repeated communication, the cooperation rate is generally more stable over rounds

compared to the treatments with only pre-play communication. The differences in

the stability of cooperation between the repeated and the pre-play communication

treatments are more pronounced under imperfect monitoring. Under imperfect

monitoring with pre-play communication, the average cooperation rate is around

30 percentage points lower after 10 rounds without communication opportunities,

but at most 13 percentage points lower with repeated communication. In contrast,

if monitoring is perfect, the average cooperation rate only reduces by around 10

percentage points with pre-play communication, and does not decline at all with

repeated communication. Without communication, cooperation declines over the

rounds of a supergame at a similar rate under all three monitoring structures.

To test whether the stability of cooperation over rounds differs between the

pre-play and repeated communication treatments, we use the data of both treatments

and regress cooperation on a dummy for the repeated communication treatment,

the round number, and the interaction of the two variables. We test whether the

coefficient of the interaction term is positive and significantly different from zero

using two-way clustered standard errors for participant and match. The results

indicate that cooperation is more stable with repeated communication if monitoring

is imperfect (perfect: pall = 0.10, pl3 = 0.17; public: pall < 0.01, pl3 = 0.01; private:

pall < 0.01, pl3 = 0.02). If we compare the treatments with pre-play communication,

we find that the decline of cooperation over rounds is significantly stronger under

imperfect monitoring (perfect vs. public: pall < 0.01, pl3 < 0.01; perfect vs. private:

pall < 0.01, pl3 < 0.01).14 Finally, Figure 4 shows no differences in the stability of

14The results are robust if we additionally include fixed effects for the supergame length in the
regressions. Cooperation is more stable with repeated communication if monitoring is imperfect
(perfect: pall = 0.10, pl3 = 0.16; public: pall < 0.01, pl3 = 0.01; private: pall < 0.01, pl3 = 0.02)
and the decline of cooperation over rounds is significantly stronger under imperfect monitoring
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cooperation between the perfect and the imperfect monitoring structures without

communication.

Result 2: While pre-play communication is sufficient for reaching a high and stable

cooperation rate under perfect monitoring, repeated communication is important for

stable cooperation under both imperfect monitoring structures.

Efficiency In Figure 5, we relate the observed cooperation rates in the experiment

to the equilibria discussed in Section 2.3. For this purpose we compute a measure

of efficiency relative to simulated mutual cooperation in all rounds. We simulate

cooperation rates in different cooperative equilibria using the noise realization in

the experiment and compare their efficiency to the efficiency of the observed rates

in our matching groups.15

Figure 5: Efficiency (last 3 supergames)
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Notes: Boxplots show the distribution of relative efficiency (matching group averages) over the
last three supergames. The efficiency of the payoffs is depicted relative to simulated symmetric
play of ALLD (0 on y-axis) and simulated symmetric play of ALLC (1 on y-axis). The horizontal
line within each box indicates the median, the boxes the interquartile range, and the whiskers
the minimum and maximum efficiencies. The efficiency of the equilibria is computed based
on 1000 simulation runs using the actual implementation of the noise in each treatment (that
is, whether the correct or the incorrect signal is transmitted in a certain round). Note that
the larger differences between the matching groups in the imperfect monitoring treatments, as
compared to the perfect monitoring treatments, is partly due to this noise.

The comparison reveals that efficiency under imperfect monitoring is far lower without

communication, and also with pre-play communication, than what is theoretically

possible in cooperative equilibria. The same holds for perfect monitoring without

communication. With pre-play communication under perfect monitoring, and with

repeated communication under all three monitoring conditions, efficiency is close to

the most efficient equilibria in the last three supergames.

(perfect vs. public: pall < 0.01, pl3 < 0.01; perfect vs. private: pall < 0.01, pl3 < 0.01).
15We simulate cooperation rates for the most efficient pure-strategy-SPEs, for the most efficient

M1BF equilibrium (the most efficient T1BF equilibrium), belief-based equilibria (mixing GRIM
and ALLD), and the truth-telling equilibrium described in Appendix A.3.3.
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Conditional Cooperation Rates Table 3 offers a detailed picture of when play-

ers cooperate in the nine different treatments. The upper part shows the frequency

of cooperation conditional on five different histories of play - focusing on information

about the previous round. The first history is the empty information set (∅) in

round one of a supergame. For perfect monitoring, the four remaining histories

are the possible action combinations {ai, a−i} of the previous round. For imperfect

monitoring, we focus on the four possible action-signal combinations {ai, ω−i}.16 To

test for significant differences between treatments, we use one-sided t-tests of logistic

regression coefficients with standard errors clustered on participant and match.

Table 3: Conditional Cooperation Rates

Perfect Public Private

history No Pre Rep No Pre Rep No Pre Rep

cooperation rate

∅ 0.34 0.86 0.91 0.25 0.79 0.85 0.37 0.85 0.83
CC/Cc 0.94 0.98 0.98 0.86 0.88 0.94 0.91 0.94 0.94
CD/Cd 0.29 0.29 0.43 0.42 0.58 0.69 0.36 0.51 0.61
DC/Dc 0.28 0.33 0.43 0.17 0.35 0.46 0.16 0.42 0.56
DD/Dd 0.09 0.07 0.32 0.11 0.18 0.33 0.07 0.13 0.38

absolute frequency

∅ 364 378 378 336 364 350 336 350 350
CC/Cc 192 1290 1496 162 807 1085 210 889 1063
CD/Cd 244 70 47 225 273 208 184 238 223
DC/Dc 244 70 47 309 221 129 264 171 131
DD/Dd 984 296 136 840 359 176 878 300 185

Notes: The upper part of the table shows the frequency of cooperation after five different histories

of the last round. The first history is the empty history (∅) in round one of a supergame. For

perfect monitoring, the remaining four histories represent four possible combinations of last round

actions {ai, a−i}. For imperfect monitoring, the remaining four histories are the action-signal

combinations {ai, ω−i} of the last round. The lower part of the table shows the absolute frequency

of the histories in each treatment. Data of all supergames is presented.

The first row of Table 3 shows that pre-play communication facilitates coordination

on cooperation in the first round. Repeated communication opportunities further

increase the frequency of cooperation by at most 6 percentage points (under public

16For perfect and public monitoring, the reported histories only represent a subset of the available
information about the last round. Analyses of participants’ strategies suggest that the behavior in
these treatments is explained best by assuming that participants condition on the action profile
under perfect monitoring, and the action-signal profile under public monitoring.
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monitoring). The additional benefit of repeated communication is even smaller in

the last three supergames (not reported here).

The frequencies reported in the second row of Table 3 can be interpreted as a

measure for unjustified defection since most cooperative strategies cooperate after

CC (Cc). The frequency of unjustified defection is one minus the frequency reported

in the second row. Unjustified defection is generally rare across all treatments and

does not substantially decrease when communication opportunities are available. An

exception is public monitoring where unjustified defection is more frequent and does

significantly decrease with repeated communication (6 ppt difference, p < 0.01).

The largest effect of communication on the probability to cooperate is observed

after histories that indicate defection (rows 3-5). A comparison of the reported

cooperation frequencies across the communication treatments shows that leniency

towards defection (signals) shown in row three and forgivingness - the probability

to return to cooperation after defection shown in row four and five - increase in

the number of communication opportunities. In the treatments with imperfect

monitoring, the additional increase of leniency and forgivingness with repeated

communication is significant (all comparisons p < 0.1). With repeated communica-

tion opportunities, participants are 10-11 percentage points more lenient towards

defection signals (11-14 ppt in the last three supergames), and 11-25 percentage

points more likely to return to cooperation after defection (7-30 ppt in the last

three supergames). We also find more mutual cooperation after wrong defection

signals with repeated communication under imperfect monitoring by looking only

at rounds in which both players jointly cooperated in the previous round and one

player received a defection signal (public: 9 ppt, p = 0.06; private 11 ppt, p = 0.07).

3.2 Mechanisms

Question 3: What are the mechanisms through which communication affects

behavior?

Communication Content We analyze the content of communication based on a

classification of two independent raters. Our two raters made an average of 2.65

classifications into 72 sub-categories per participant-round observation, resulting

in 18,678 and 18,984 classifications in total. To make the interpretation of the

communication content easier, we collapse the 72 sub-categories into five main

categories: Coordination, Deliberation, Relationship, Information and Trivia.17 The

17See Tables B1 and B2 in Appendix B for the mapping of sub-categories to main categories,
the frequency of occurrence of messages in the (sub-)categories and the average Cohen’s κ (across
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category Coordination includes all attempts by participants to coordinate behavior

in future rounds. The category also includes implicit or explicit announcements of

choices since such announcements could also be used to coordinate behavior. The

category Deliberation includes all instances in which participants discuss choices or

strategies. All content that concerns the relationship of a matched pair of participants

is included in the category Relationship. The category also covers motivational talk

and positive feedback that we find to be quite common. The category Information

includes all statements that contain reports of actions, signals or payoffs from the

current supergame, which cannot occur before round one. Our last main category,

Trivia, contains content that is off-topic or classified as small talk by our raters. In

contrast to the Relationship category, the content does not have an obvious relation

to the game.

Table 4 reports the relative frequency of the five main categories in the last

three supergames.18 The frequencies are very similar when all supergames are

considered (see Table B1, Appendix B). Overall, we observe that the frequencies

of the categories in round one of the repeated communication treatments (column

Rep-f) are similar to those of pre-play communication. This indicates that the

communication phase before the first round is used similarly by the participants of

the pre-play and repeated communication treatments.

Table 4: Frequency of Codings per Individual-Round Observation

Perfect Public Private

Pre Rep-f Rep-l Pre Rep-f Rep-l Pre Rep-f Rep-l

Coordination 0.98 0.96 0.11 0.97 0.97 0.21 0.97 0.97 0.28
Deliberation 0.54 0.51 0.08 0.65 0.60 0.09 0.58 0.71 0.09
Relationship 0.12 0.19 0.21 0.24 0.15 0.33 0.29 0.17 0.31
Information − − 0.21 − − 0.38 − − 0.40
Trivia 0.96 0.99 0.68 0.91 0.93 0.58 0.83 0.99 0.60

Notes: Level of the analysis are individual-round observations. “Rep-f” (Rep-l) indicates the

first (later) rounds in the repeated communication treatments. The data is from the last three

supergames. A coding is considered as valid if both raters indicated the same category for a

participant-round observation.

The category Coordination occurs in the vast majority of participant-round observa-

tions of the pre-play phase. Its relative frequency in the later rounds of the repeated

treatments) of all categories and sub-categories.
18The average Cohen’s κ across treatments is above 0.7 for all five main categories, which

indicates a high level of agreement between the two raters.
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communication treatments is lower, which suggests that coordination predominantly

occurs before the first round. The frequencies of the sub-categories of the Coordi-

nation category reveal that an initial suggestion to play CC is made by roughly

half of all participants, and in almost all pairs of participants in the communication

treatments.

Our raters indicate content related to Deliberation in roughly every second

participant-round observation with pre-play communication. In the repeated com-

munication treatments, content related to deliberation becomes less frequent after

round one. Content related to the category Relationship is more frequent under

imperfect monitoring. In contrast to the categories Coordination and Deliberation,

the category Relationship does not become less frequent after round one. Content

falling in the Information category is most frequent with repeated communication

under imperfect monitoring. In order to assess whether participants report private

information, we will look at data from sub-category level in the following. The

Trivia category is always among the most frequent in all treatments.

Strategic Uncertainty The probability of facing a non-cooperative player is much

lower in the communication treatments than in the no-communication treatments.

Most likely, communication also reduces subjective strategic uncertainty, that is,

the players’ beliefs in their opponents’ cooperativeness. To understand how this is

achieved, we relate the content of communication to the behavior observed in the

experiment. It is important to stress that, since the content of communication is

endogenous, the results presented in the following reflect correlations between the

content of communication and behavior.

We find that agreements to cooperate are associated with a higher frequency of

mutual cooperation in round one. If participants agree to cooperate, the frequency

of mutual cooperation in round one is 35 percentage points higher under perfect

monitoring, 49 ppt higher under public monitoring, and 38 ppt higher under private

monitoring (data of all supergames). The differences are smaller in the last three

supergames, in which nearly all pairs start with cooperation. Participants who agree

to cooperate in round one actually cooperate in 95% of all cases. This appears to

be the key channel to reduce strategic uncertainty. Some participants also suggest

DD but this occurs at a frequency below 10% in all treatments. More complex

suggestions than CC or DD for coordinated play or explicit or implicit threats of

punishment in the case of defection occur at very lower frequencies (even lower than

DD).
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Uncertainty about the History of Play The mere coordination on behavior

in the first round means that most pairs of participants enter the game without an

agreed-upon plan for how to deal with defections or bad signals in the imperfect

monitoring treatments. It seems plausible that this incomplete coordination on an ef-

ficient equilibrium explains the decline in cooperation in the pre-play communication

treatments under imperfect monitoring.

To shed more light on this, we exploit the randomness of the signals to investigate

what happens under imperfect monitoring when participants have the opportunity to

talk repeatedly after a wrong defection signal. We compare the communication after

a random interruption of a perfectly cooperative history (crisis) to the communication

after an uninterrupted perfectly cooperative history (when things go well) in Table

5 (see Table B4, Appendix B for all supergames). Participants make more proposals

regarding future play (mostly CC) in the crisis situations than when things go well,

suggesting that the first defection signal generates some demand for (re)coordination.

The frequency of communication related to deliberation and the relationship of the

matched participants does not change in crisis situations. However, an analysis of the

subcategory level reveals that the tone of the communication about the relationship

of the matched participants is negatively affected by the first defection signal. We

see an increase in the frequency of expressions of disappointment, and an increase in

the frequency of accusations of cheating (see Tables B5 and B6 in Appendix B). At

the same time, we see a drop in off-topic talk in crisis situations and a substantial

increase in information exchange about signals and payoffs. Table 5 also reveals that

communication about signals increases after the first defection signal. Moreover,

participants frequently respond to the uncertainty triggered by the first defection

signal by reporting that their previous action was C, which is a truthful exchange

of private information. In many cases, this appears to be sufficient to decrease the

uncertainty triggered by the defection signal to a level that prevents participants

from switching to defection.

Table 6 takes a closer look at the exchange of private information under imperfect

public and imperfect private monitoring. It depicts the frequency and the truthfulness

of the exchange of private information in all communication opportunities of the

last three supergames (see Table B7, Appendix B for all supergames). Under public

monitoring, this concerns the actions which cannot be observed by the other player.

The left columns show that an action is reported in only 10% of all participant-round

observations after round one. The vast majority of reports indicate cooperation in

the last round, which is true in 93% of all cases.

The right columns of Table 6 show a similar pattern of reports for private
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Table 5: Message-content comparison: cooperative history vs. first defection signal

Public Repeated Private Repeated

Category d signal c signals diff p-value d signal c signal diff p-value

Coordination 0.32 0.17 0.15 0.05 0.49 0.24 0.25 0.00
Deliberation 0.11 0.10 0.01 0.89 0.02 0.08 -0.06- 0.22
Relationship 0.33 0.35 -0.02- 0.79 0.30 0.37 -0.06- 0.46
Information 0.68 0.32 0.36 0.00 0.70 0.40 0.30 0.00
Trivia 0.51 0.61 -0.10- 0.17 0.47 0.66 -0.20- 0.04

Report of action 0.46 0.01 0.45 0.00 0.47 0.11 0.36 0.00
Report of C 0.46 0.01 0.45 0.00 0.47 0.11 0.36 0.00
Report of D - - - - - - - -

Report of signal 0.56 0.32 0.23 0.00 0.70 0.37 0.33 0.00
Report of c 0.08 0.32 -0.24- 0.00 0.00 0.37 -0.37- 0.00
Report of d 0.46 - - - 0.70 0.00 0.69 0.00

Notes: Frequency of communication categories for subject-round observations with cooperative history of both
players up to round t. A participant has a cooperative history if all her previous actions were C and all signals
she observed in rounds < t were c. Columns compare the communication in round t+ 1 conditional on the
signals received in round t. Frequencies indicate the probability that both raters indicated the category for a
text unit. P-values derived from logit models with standard errors clustered on participant and match. Zero
frequencies omitted (-).

Table 6: Frequency and Truthfulness of Private Information Exchange

Public Private

p(report) p(true) p(report) p(true)

Actions
Report of action 0.10 0.93 0.17 0.93
Report of C 0.09 0.93 0.16 0.93
Report of D 0.01 0.86 0.00 1.00
Report of C if ωi = d 0.22 0.82 0.24 0.75

Report of C if ωi = d and ai = C 0.38 1.00 0.35 1.00
Report of C if ωi = d and ai = D 0.07 0.00 0.12 0.00
Report of D if ωi = d and ai = D 0.09 1.00 0.03 1.00

Signals
Report of signal - - 0.38 0.96
Report of c - - 0.27 0.99
Report of d - - 0.10 0.87
Report of d if ω−i = d - - 0.48 -

Notes: Frequencies of coding in all participant-round observations after round one of the last three
supergames for the repeated communication treatments with public monitoring (columns 2 and 3)
and private monitoring (columns 4 and 5). A coding is considered valid if both raters indicated
the same sub-category for a participant-round observation. Values might not add up as expected
due to rounding.
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monitoring. Reports of C occur in 24% of all cases when the partner has received a

defection signal in the last round. As under public monitoring, this strategy is not

systematically used by defectors (only in 12% of all cases, 9 absolute cases). One

important difference concerns the interpretation of reporting C when the signal is d.

Under private monitoring, the difference compared to the baseline frequency of C

reports suggests that their partners reported the d signal in the first place. This

indirect evidence is supported by the values in the lower part of the table. A signal

is reported in 38% of all participant-round interaction after round one. Most of

the reports reveal a c signal truthfully. In 10% of all participant-round interactions

participants report a d signal. To put this value into perspective, remember that

d signals occur very seldom because of the high level of cooperation. The last line

shows the frequency of d reports when a d signal actually occurred: it is 48%.

Approximately half of the defection signals observed stem from defection (54%

under public, 48% under private monitoring), while the other half is due to noise.

Honest revelation of defection in the communication phase after the partner observed

a defection signal is rare and only happens in 9% of all cases under public, and 3% of

all cases under private monitoring. Table 6 also lists the frequency of C reports if the

signal was d. In 22% of the cases where a d signal occurs, it is followed by a report

of C (truthful in 82% of cases). The next two rows indicate that deceptive reports

of C are not systematically used by defectors. While participants who defected in

the last round report C in response to a d signal in only 7% of all cases (5 absolute

cases), cooperators did so in 38% of all cases. Together with the high frequency of

cooperation, this explains why reports of C after a defection signal are generally

credible (even though defectors self-select into this state).

Summarizing the results reported in Table 6, we can say that participants make

ample use of repeated communication to exchange private information. Actions

are communicated less often than signals and both types of reports are generally

credible. As a result, it seems highly likely that uncertainty about the history of

play is substantially reduced with repeated communication.

Table 7 shows that the exchange of private information is correlated with the

frequency of mutual cooperation after a defection signal. We consider all cases where

a defection signal was obtained by one of the participants in the last round. If the

player for whom the last signal indicated defection reports cooperation (denying the

accuracy of the signal), the frequency of mutual cooperation is higher under public

monitoring. The difference in the frequency of mutual cooperation after reporting

C is larger under private monitoring when the reporting player is not aware of the d

signal. The interaction term indicates that, when a report of C occurs together with
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a report of d, the frequency of mutual cooperation after reporting C is smaller but

still substantial. Truthfully reporting a defection signal under private monitoring

is also associated with a higher frequency of mutual cooperation. For data of all

supergames, the differences in the frequency of mutual cooperation after private

information exchange are similar (Table B8).

Table 7: Private Information Exchange and Mutual Cooperation after a bad Signal

Public Private

estimate std. error p-value estimate std. error p-value

Intercept 0.00 0.38 1.00 -0.32- 0.52 0.54
Report of C 0.79 0.41 0.05 16.84 0.81 0.00
Report of d - - - 1.02 0.69 0.14
Report of C × Report of d - - - -16.29- 1.25 0.00
Trivia 1.00 0.40 0.01 0.13 0.40 0.75

Notes: Coefficients of logit models with standard errors clustered on participant and match. Report
of C is a dummy that indicates if C is reported by the player for whom the signal indicated d in
the last round. Report of d is a dummy that indicates whether the defection signal was reported
by the player who received the defection signal. Data of the last three supergames. A coding is
considered valid if both raters indicated the same sub-category for a participant-round observation.

Result 3: Communication opportunities are mainly used to (a) coordinate behavior

before the start of the interaction, which appears to reduce strategic uncertainty, and

(b) to exchange information about the history of play in later rounds under imperfect

monitoring, which appears to reduce uncertainty about what has happened.

Strategies One limitation of conditional cooperation rates, as reported in the

Section 3.1, is that they can only partially reflect more complex strategies that

participants might use. To assess the robustness of the finding that communication

opportunities make participants’ play more lenient and forgiving, we perform a

treatment-wise strategy frequency estimation (Dal Bó and Fréchette, 2011) (see

Appendix C for details). We use a candidate set of pure strategies for imperfect

monitoring (Fudenberg et al., 2012), augmented by four memory-one belief free

strategies - including T1BF, the unique memory-one belief-free equilibrium strategy

under imperfect monitoring (see Appendix A).19 We assume that all strategies of the

19The other three belief-free strategies are: SGRIM, M1BF, and RAND. SGRIM is a semi-grim
strategy (Breitmoser, 2015) which starts with cooperation, cooperates after CC (Cc), defects after
DD (Dd), and cooperates with probability 0.35 in the remaining states, CD (Cd) and DC (Dc).
The probability 0.35 is the average cooperation probability that Backhaus and Breitmoser (2021)
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treatment condition on the same information. The strategies fitted to the data of

the perfect monitoring treatments condition on the action profile {ai, a−i} observed

in the previous round. The strategies fitted to the data of the imperfect monitoring

treatments condition on the action-signal profile {ai, ω−i} observed in the previous

round.

Table 8 depicts strategy estimation results. It show the estimated strategy shares

of ”always-defect” (ALLD), an alternating strategy (DC) that starts with D and

subsequently alternates between C and D, the false-cooperator (FC) that cooperates

only in the first period and subsequently defects, the grim-trigger strategy (GRIM),

and a strategy that randomly plays either C or D (RAND). To facilitate the in-

terpretation of the strategy estimation results, the shares of all remaining lenient

or forgiving strategies are pooled into a single category (Table C1 in Appendix C

shows the strategy shares of the pooled strategies together with standard errors).

The proportion of participants that use lenient or forgiving strategies increases

substantially with pre-play communication under all three monitoring structures.

Repeated communication further increases the use of lenient or forgiving strategies.

Table 8: Strategy Frequency Estimation

Perfect Public Private

No Pre Rep No Pre Rep No Pre Rep

ALLD 0.42 - - 0.61 0.02 - 0.50 0.02 -
DC - - - - - - - - -
FC - - - - 0.08 0.01 - - -
GRIM 0.08 0.23 - - 0.02 - 0.03 - -
RAND 0.03 - - 0.05 0.08 0.05 0.03 0.11 0.03
lenient/forgiving 0.46 0.77 1.00 0.34 0.79 0.94 0.45 0.87 0.97

γ 0.06 0.01 0.01 0.07 0.06 0.03 0.05 0.02 0.04

Notes: Treatment-wise strategy estimation for 24 strategies listed in Tables C2-C5 assuming
constant strategy use over the last three supergames. Strategies condition on the observed actions
in perfect treatments, and on action-signal profiles in public and private treatments. The parameter
γ reflects the probability of a tremble. Zero shares are omitted (-). The sum of strategy shares in a
treatment might differ from one due to rounding.

report for these states. M1BF refers to the unique belief-free strategy under perfect monitoring
with δ = 0.8 that starts with cooperation, cooperates after CC (Cc) and defects after DD (Dd)
(see Appendix A for the derivation of these strategies). RAND cooperates with 50% probability
after all histories.
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Result 4: With more communication opportunities, subjects’ play becomes more

lenient and forgiving.

4 Discussion

In the theoretical literature, communication has played a particularly prominent role

in combination with private monitoring. For this monitoring structure, it has been

shown that repeated communication opportunities can enlarge the set of achievable

equilibria (Matsushima, 1991; Ben-Porath and Kahneman, 1996; Compte, 1998;

Kandori and Matsushima, 1998; Obara, 2009; Awaya and Krishna, 2016). Truth-

telling equilibria, in which players reveal their private signals, are stable, while the

cooperative equilibria without repeated communication that have been analyzed in

the literature are not (Heller, 2017). Moreover, any cooperative equilibrium without

repeated communication requires complicated mixing, which makes coordination

with or without pre-play communication extremely difficult; this led Compte and

Postlewaite (2015) to characterize them as “unrealistically complex and fragile” (p.

45). These considerations suggest low cooperation rates in the private monitoring

treatment without communication; this is, indeed, what we observe. They also

suggests low cooperation rates with pre-play communication (Prediction 1); instead,

we observe high cooperation rates (Result 1). This suggests that pre-play communi-

cation is effective in reducing strategic uncertainty through improved coordination

on cooperation, even in the absence of stable equilibria. However, subjects’ mere

coordination on mutual cooperation in the beginning of the interaction is insuffi-

cient to maintain a high and stable cooperation level both under imperfect private

monitoring and under imperfect public monitoring, where efficient equilibria require

the use of complex strategies as well. In our experiment, subjects fail to identify

and communicate these strategies, which further increases the uncertainty about

the history of play when bad signals occur for the first time.

Our key finding that repeated communication is important for stable cooperation

in noisy environments (Result 2), which confirms Prediction 2, is consistent with

evidence from a number of case studies of cartels, which point to different roles for

repeated communication. Genesove and Mullin (2001) note in their account of the

sugar-refining cartel that its weekly “[m]eetings were used to interpret and adapt the

agreement, coordinate on jointly profitable actions, and determine whether cheating

had occurred” (p. 379); put differently: meetings were used to reduce strategic

uncertainty and uncertainty about the history of play. Levenstein and Suslow (2006)

review the empirical literature on cartels and identify repeated communication as a
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key ingredient of successful cartel organizations – “not only to provide flexibility in

the details of the agreement, but to build trust as well” (p. 67). Finally, Harrington

and Skrzypacz (2011), who study various cartel agreements, conclude that repeated

truthful communication of sales is an important property of all of them. These

accounts are consistent with our findings of more lenient and forgiving behavior with

communication (Result 4), and of the use of communication to coordinate behavior

and to share private information (Result 3), which confirms Prediction 3.

It is long known that the mere existence of cooperative equilibria is an insufficient

condition for reaching high cooperation rates in indefinitley repeated interactions

(e.g., Dal Bó and Fréchette, 2019). Our results show how powerful communication

is to achieve high cooperation rates. However, while pre-play communication boosts

cooperation, it does not increase it all the way up to the theoretically possible

efficiency levels under imperfect monitoring. Repeated communication opportunities

are important in these environments. We observe that repeated communication is

mainly used to share information about the history of play, which is the key role

ascribed to communication in the theoretical literature.

5 Conclusion

We set out to answer the central question how communication affects the level and

stability of cooperation in long-term interactions with different monitoring structures,

such as cartels, teams or friendships. Our results give a comprehensive overview

of how communication is used and affects cooperation and strategy choices. They

demonstrate that communication can have an enormous impact on cooperation and

its stability. The controlled laboratory environment allows us not only to cleanly

identify and separate the effect of communication, but also to understand the mech-

anisms through which communication affect cooperation. Our results suggest that

communication fosters cooperation by reducing two types of uncertainty, strategic

uncertainty and uncertainty about the history of play, and thereby reveal an impor-

tant interplay between communication opportunities and the quality of monitoring.

Most importantly, we find that repeated communication opportunities are important

for sustaining cooperation under imperfect monitoring where uncertainty about

the history of play becomes important. This finding is consistent with case study

evidence on cartels and corroborates that cracking down on communication is a

reasonable strategy for antitrust authorities. Without repeated communication

opportunities, it becomes very difficult to sustain cooperation even in the relatively

simple setting of our laboratory experiment.
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We would finally like to point to some interesting avenues for future research.

Communication affects choices and vice-versa. Ideally, we would thus like to estimate

strategies that treat communication content as a choice and condition behavior

not only on past actions and signals but also on past communication. To have a

chance to recover such strategies from the data, one would have to strongly limit

the message space, as do Arechar et al. (2017), who allow for communication only

about intended actions. To gain more insights into the role of information exchange

under private monitoring, it could be useful to limit communication to the reporting

of private signals in future studies. However, while that would help to gain insights

into this important role of communication, our results, and those from other recent

studies of communication in repeated games, clearly suggest that thinking about

communication as a mere exchange of information is insufficient. Kartal and Müller

(2018) make a first step in broadening this narrow theoretical view of communication

by modeling how communication reduces strategic uncertainty. Taking further steps

in this direction, for example, by combining the two key roles that communication

appears to play under imperfect monitoring – the reduction of strategic uncertainty

and the reduction of uncertainty about the history of play – in one framework,

promises to be a fruitful agenda for future research.
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[FOR ONLINE PUBLICATION]

Appendix A Theoretical Appendix

In A.1, we present an extensions of the BAD to the two imperfect monitoring structures.

In A.2, we derive existence conditions for equilibria in memory-one belief-free strategies in

general, and for the subset of semi-grim memory-one belief-free equilibria. The latter give

us the SG-thresholds. Further, we provide a characterization of these equilibria. In A.3, we

construct renegotiation-proof equilibria for perfect and imperfect public monitoring and a

truthful communication equilibrium for the case of imperfect private monitoring. It will be

useful to recall the normalized stage game parameters:

C D

C 1,1 −l,1+g

D 1+g,−l 0,0

A.1 BAD under imperfect monitoring

Extending the BAD to imperfect monitoring requires to adapt the GRIM strategy to the

imperfect monitoring structures. To derive lower bounds of the BAD, we use the adaptation

of GRIM which is most robust to strategic uncertainty. This adaptation prescribes that

players play D if they already played D in the previous round or when the last signal was

not cc (c) under public (private) monitoring.

A.1.1 Public Monitoring

With public monitoring, indifference between GRIM and ALLD requires

π
1

1− δ(1− ϵ)2
− (1− π)

l

1− δϵ(1− ϵ)
= π

(1 + g)

1− δϵ(1− ϵ)
.

Hence, the BAD is

πDF =
l

l − g + δ((1−ϵ)2−ϵ(1−ϵ))
1−δ(1−ϵ)2

. (1)
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If g = l, the lower bound is

πDF =
1− δ(1− ϵ)2

δ((1− ϵ)2 − ϵ(1− ϵ))
l,

and ∂πDF/∂ϵ = lδ(3− 4ϵ− δ(1− ϵ)2)/(δ(1− 2ϵ)2(ϵ− 1)2) > 0 for δ < 1 and ϵ ≤ 0.5.

If 1 + g = l, the lower bound is

πDF =
1− δ(1− ϵ)2

1− δϵ(1− ϵ)
l,

and ∂πDF/∂ϵ = lδ(3− 4ϵ− δ(1− ϵ)2)/(1− δϵ(1− ϵ)2 > 0 for δ < 1 and ϵ ≤ 0.5. Note that

for ϵ = 0 the equations above yield the BAD of perfect monitoring.

A.1.1 Private Monitoring

With private monitoring, indifference requires

π
1 + δϵ(1− ϵ)(1 + g − l)/(1− δϵ)

1− δ(1− ϵ)2
− (1− π)

l

1− δϵ
= π

(1 + g)

1− δϵ
,

and the BAD is given by

πDF =
l

l − g + δ((1−2ϵ)−ϵ(1−ϵ)(l−g))
1−δ(1−ϵ)2

. (2)

If g = l, the lower bound is

πDF =
1− δ(1− ϵ)2

δ(1− 2ϵ)
l,

and ∂πDF/∂ϵ = 2l(1− δ(ϵ(1− ϵ))/(δ(1− 2ϵ)2) > 0 for δ < 1 and ϵ ≤ 0.5.

If 1 + g = l, the lower bound is

πDF =
1− δ(1− ϵ)2

1− δϵ(1− ϵ)
l,

and ∂πDF/∂ϵ = lδ(3 − 2ϵ − δ(1 − ϵ)2)/(1 − δϵ)2 > 0 for δ < 1 and ϵ ≤ 0.5. For ϵ = 0, the

equations above yield the BAD of perfect monitoring. Note that under private monitoring

(GRIM, GRIM) is not an equilibrium in pure strategies but πDF equals the mixing probability

in Sekiguchi’s (1997) construction of a belief-based equilibrium.
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A.2 Belief-Free Equilibria

Depending on the monitoring structure, different versions of memory-one belief-free strategies

exist. We consider three cases: (1) M1BF strategies which condition on (ai, a−i), (2) M1BF

strategies which condition on (ωi, ω−i), and (3) M1BF strategies which condition on (ai, ω−i).

Under perfect monitoring, all three cases are possible. Under public monitoring, only cases

2 and 3 are possible while case 3 is the only possible case under private monitoring. The

existence conditions of semi-grim strategies which condition on public signals and action-signal

combinations are defined in Propositions 1.1.2, 1.2.2 and 1.3.2.

A.2.1 Actions (Perfect Monitoring)

Proposition 2.1.1 [Memory-One Belief-Free Equilibria Conditioning on Actions]

(i) If strategies condition on actions, the existence condition for symmetric memory-one

belief-free equilibria depends on the larger of the two values g and l. Let ϕ denote the

larger of the two values. The existence condition is:

δ ≥ δBFaa =
ϕ

1 + ϕ
(3)

(ii) Above the threshold, a two-dimensional manifold of memory-one belief-free equilibria

exists given by

σcd = σcc +

(
σcc − σdd −

1

δ

)
g (4)

and

σdc = σdd −
(
σcc − σdd −

1

δ

)
l (5)

(iii) For δ = δBFaa all memory-one belief-free equilibrium strategies have the same cooperation

probabilities after nonempty memory-one histories and are σ = (σ∅, 1, (1− g/l), 1, 0) if

l > g, σ = (σ∅, 1, 0, (l/g), 0) if g > l and σ = (σ∅, 1, 0, 1, 0) if g = l. We call this the

threshold memory-one belief-free equilibrium T1BF.

Since g and l are both positive values these equilibria exist for high enough values of δ. Note

that if g ≥ l the δ threshold corresponds to the one for cooperative subgame-perfect equilibria

of the repeated game with perfect monitoring. However, if l > g as in our case, the conditions

differ with δBFaa > δSPE. The condition applies for belief-free equilibria in reactive strategies
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(Kalai et al., 1988) which condition on the other player’s action and require g = l which

yields δBFaa = δSPE.

Proof of Proposition 1.1.1. Let V ai
ajai

denote player i’s expected payoff for playing ai if player

j observed the action profile {aj, ai} in the previous round (we say player j is in state ajai).

If σaiaj denotes the probability to play c for any player i after {ai, aj}, we have:

V c
aa = (1− δ)(σaa − (1− σaa)l) + δ(σaaVcc + (1− σaa)Vdc) (6)

V d
aa = (1− δ)(σaa(1 + g) + (1− σaa)0) + δ(σaaVcd + (1− σaa)Vdd) (7)

Following Bhaskar et al. (2008), we derive conditions for Vcd and Vcc which assure the strategies

are belief-free, that is, for any σaa ∈ (0, 1), player i is indifferent between playing c or d

independent of player j’s state. Subtracting (7) from (6) gives:

0 = σaa {(1− δ)(l − g) + δ (Vcc − Vcd − Vdc + Vdd))} − (1− δ)l + δ (Vdc − Vdd)

The equation holds independent of σaa if the terms in curly brackets and the last part are

both zero. Solving the the condition resulting from the last part for Vdc − Vdd and inserting

the solution into the condition derived from the terms in curly brackets gives

Vcc = Vcd +
(1− δ)g

δ

and

Vdc = Vdd +
(1− δ)l

δ

Solving (6) for σcc using the condition on Vdc above and rearranging for Vcc yields

Vcc =
(1− δ)σcc + δ(1− σcc)Vdd

1− δσcc

Solving (6) for σdd using the condition on Vcd and Vcc above gives

Vdd =
σdd

1 + δσdd − δσcc

Now, all Vaa can be eliminated from (6) solved for σdd and σdc this yields (4) and (5) which

proofs (ii). Note that ∂σcd/∂δ > 0, ∂σcd/∂σcc > 0 and ∂σcd/∂σdd < 0. The question is, how

big δ must be at least in order to assure that σcd ≥ 0 if σcc = 1 and σdd = 0. Inserting these

values into (4) and rearranging gives δ > δBFaa with ϕ = g. Note that σcd ≤ 1 is true even

if σcc = 1 and σdd = 0 for all feasible values of δ, g and l. At the same time ∂σdc/∂δ < 0,
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∂σdc/∂σcc < 0 and ∂σdc/∂σdd > 0. The question here is, how big δ must be at least in order

to assure that σdc ≤ 1 if σcc = 1 and σdd = 0. Inserting these values into (5) and rearranging

gives δ > δBFaa with ϕ = l. At the same time, σdc ≥ 0 true even if σcc = 1 and σdd = 0 for

all feasible values of δ, g and l. Hence, the larger of the values g and l imposes the stricter

condition on δ which proofs (i). To complete the proof, insert (3) together with σcc = 1 and

σdd = 0 into (4) and (5) to obtain the structure of the T1BF response defined by g and l.

Next, we derive the δ threshold, above which semi-GRIM equilibria exist. See Breitmoser

(2015) for an alternative derivation.

Proposition 1.1.2 [Semi-Grim M1BF Equilibria Conditioning on Actions]

(i) If strategies condition on actions, the existence condition for symmetric semi-grim

memory-one belief-free equilibria is:

δ ≥ δSGaa =
g + l

1 + g + l
(8)

(ii) Above the threshold a continuum σcc ∈ ( g+l
δ(1+g+l)

, 1) of memory one belief-free equilibria

in semi-grim strategies exists, given by:

σdd = σcc −
g + l

δ(1 + g + l)
(9)

and

σcd = σdc = σcc −
g

δ(1 + g + l)
(10)

(iii) For δ = δSGaa all semi-grim memory-one belief-free equilibrium strategies have the

same cooperation probabilities after nonempty memory-one histories and are σ =

(σ∅, 1, 1− g/(g + l), , 0). If l = g, then σ = (σ∅, 1, 0.5, 0.5, 0).

Proof of Proposition 1.1.2. Using (4) and (5) yields (9) and (10). Note that σdd < σcd < 1

for σcc ∈ (0, 1) and any δ ∈ (0, 1). For existence σdd must be positive. Rearranging yields the

SG-threshold. Note that the condition on δ is always stricter than the condition on δ, which

results from σcd = σdc ≥ 0, and is δ ≥ g/(1 + g + l).

Note that the condition for semi grim equilibria is a mixture of the two possible conditions

based on the different values of ϕ with equal weight on g and l as required by axiom 5 in

Blonski et al. (2011) while (3) gives full weight on the larger of the two values.
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A.2.2 Public Signals (Perfect and Public Monitoring)

Proposition 2.2.1 [M1BF Equilibria Conditioning on Public Signals]

(i) If strategies condition on the ϵ-noisy public signals, the existence condition for symmetric

memory-one belief-free equilibria depends on the larger of the two values g and l. Let ϕ

denote the larger and ψ the smaller of the two values. The existence condition is:

δ ≥ δBFss =
(1− ϵ)ϕ− ϵψ

(1− 2ϵ)(1− 2ϵ+ (1− ϵ)ϕ− ϵψ)
(11)

(ii) Above the threshold, a two-dimensional manifold of memory-one belief-free equilibria

exists given by

σcd = σcc +
σcc − σdd − 1

δ(1−2ϵ)

1− 2ϵ
((1− ϵ)g − ϵl) (12)

and

σdc = σdd −
σcc − σdd − 1

δ(1−2ϵ)

1− 2ϵ
((1− ϵ)l − ϵg) (13)

(iii) For δ = δBFss all memory-one belief-free equilibrium strategies have the same cooperation

probabilities after nonempty memory-one histories and are σ = (σ∅, 1, (1− g/l), 1, 0) if

l > g, σ = (σ∅, 1, 0, (l/g), 0) if g > l and σ = (σ∅, 1, 0, 1, 0) if g = l. We call this the

threshold memory-one belief-free equilibrium T1BF.

In contrast to result for actions, combinations of the parameters g, l and ϵ exists for which

δBFss > 1.

Proof of Proposition 2.2.1. The proof follows the same steps as for actions. Let V ai
sjsi

denote

player i’s expected payoff for playing ai if player j observed {sj, si} in the previous round

(which means player j is in state sjsi). If σsisj denotes the (universal) probability of player i
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to play c after {si, sj}, we get:

V c
ss = (1− δ)(σss − (1− σss)l) + δ[(1− ϵ)(σss(1− ϵ) + (1− σss)ϵ)Vcc

+ϵ(σss(1− ϵ) + (1− σss)ϵ)Vcd

+(1− ϵ)(σssϵ+ (1− σss)(1− ϵ))Vdc

+ϵ(σssϵ+ (1− σss)(1− ϵ))Vdd] (14)

V d
ss = (1− δ)(σss(1 + g) + (1− σss)0) + δ[ϵ(σss(1− ϵ) + (1− σss)ϵ)Vcc

+(1− ϵ)(σss(1− ϵ) + (1− σss)ϵ)Vcd

+ϵ(σssϵ+ (1− σss)(1− ϵ))Vdc

+(1− ϵ)(σssϵ+ (1− σss)(1− ϵ))Vdd] (15)

Again we derive conditions for Vcd and Vcc which together assure the belief-free property

following Following Bhaskar et al. (2008), that is, for any σss ∈ (0, 1), player i is indifferent

between playing c or d independent of player j’s state. First, subtracting (15) from (14)

gives:

0 = σss
{
(1− δ)(l − g) + δ

(
(1− 2ϵ)2Vcc − (1− 2ϵ)2Vcd − (1− 2ϵ)2Vdc + (1− 2ϵ)2Vdd

))
}

−(1− δ)l + δ ((1− 2ϵ)ϵVcc − (1− 2ϵ)ϵVcd + (1− 2ϵ)(1− ϵ)Vdc − (1− 2ϵ)(1− ϵ)Vdd)

Note that he expression holds independent of σss if the terms in curly brackets and the terms

in the second line are both zero. Solving the the condition on the second line for Vdc − Vdd

and inserting into the other condition gives

Vcc = Vcd +
(1− δ)((1− ϵ)g − ϵl)

δ(1− 2ϵ)2

and

Vdc = Vdd +
(1− δ)((1− ϵ)l − ϵg)

δ(1− 2ϵ)2

Solving (14) for σcc and rearranging for Vcc yields

Vcc =
(1− δ)(σcc − l) + δ(1− ϵ− σcc(1− 2ϵ))Vdd +

(1−δ)(1−ϵ)((1−ϵ)l−ϵg)
(1−2ϵ)2

− (1−δ)ϵl
1−2ϵ

1− δ(σcc(1− 2ϵ) + ϵ)
.

Solving (14) for σdd and inserting Vcc yields an expression for Vdd (omitted here) that does not

depend on any other Vss. Now, all Vss can be eliminated from (14) and we can solve for σcd

and σdc which leads to (ii). For existence we need to assure that σcd ∈ (0, 1) and σdc ∈ (0, 1)
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for a feasible combination of values σcc, σdd and δ. First assume (1 − ϵ)ψ − ϵϕ > 0 and

consider σcd (note that (1− ϵ)ϕ− ϵψ > 0 always holds for ϵ < 0.5). In this case ∂σcd/∂σcc > 0

and ∂σcd/∂σdd < 0. Note that σcd ≤ 1 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σcd ≥ 0 we use σcc = 1 and σdd = 0. Solving for δ shows gives the condition δ > δBFss

with ϕ = g. Next, we consider σdc still assuming (1 − ϵ)ψ − ϵϕ > 0. Hence ∂σdc/∂σcc < 0

and ∂σdc/∂σdd > 0. Again σdc ≥ 0 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σdc ≤ 1 we use σcc = 1 and σdd = 0 which gives δ > δBFss with ϕ = l. Therefore, if

(1− ϵ)ψ− ϵϕ > 0 the stricter condition on δ results from the larger of the two values g or l as

in (11). Note that (1− ϵ)ψ − ϵϕ < 0 also requires δ > δBFss to make the probabilities interior.

On the other hand, it implies ϕ > 1−ϵ
ϵ
ψ and δBFss > 1. To see this we can rearrange δBFss < 1

to ϕ < (1−2ϵ)2+2ϵ2ψ
2ϵ−2ϵ2

and show that this contradicts ϕ > 1−ϵ
ϵ
ψ for ϵ ∈ (0, 0.5). This proofs (i).

To complete the proof, insert (11) together with σcc = 1 and σdd = 0 into (12) and (13) to

obtain the structure of the T1BF response defined by g and l.

Proposition 2.2.2 [Semi-Grim M1BF Equilibria Conditioning on Public Signals]

(i) If players condition on the ϵ-noisy public signals, the existence condition for semi-GRIM

equilibria is:

δ ≥ δSGss =
g + l

(1− 2ϵ)(1 + g + l)
(16)

(ii) Above this threshold, a continuum σcc ∈ ( g+l
δ(1−2ϵ)(1+g+l)

, 1) of semi-grim equilibria exists

given by:

σdd = σcc −
g + l

δ(1− 2ϵ)(1 + g + l)
(17)

and

σcd = σdc = σcc −
g

δ(1− 2ϵ)(1 + g + l)
(18)

(iii) For δ = δSGss all semi-grim memory-one belief-free equilibrium strategies have the

same cooperation probabilities after nonempty memory-one histories and are σ =

(σ∅, 1, 1− g/(g + l), 1− g/(g + l), 0). If l = g, then σ = (σ∅, 1, 0.5, 0.5, 0).

Proof of Proposition 2.2.2. Using the semi-grim property σcd = σdc for (12) and (13) yields

(17) and (18). Observe that σdd < σcd < 1 for σcc ∈ (0, 1) and for existence σdd must be

positive which can be rearranged to yield (16).
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A.2.3 Action-Signal Combinations (All Monitoring Structures)

Proposition 2.3.1 [M1BF Equilibria Conditioning on Action-Signal Combinations]

(i) If players condition on their own action and the ϵ-noisy signal of the other player’s

action, the existence condition for symmetric memory-one belief-free equilibria also

depends on the larger of the two values g and l. Let ϕ denote the larger of the two

values and ψ the smaller of the two. The existence condition is:

δ ≥ δBFas =
ϕ

1− 2ϵ+ (1− ϵ)ϕ− ϵψ
(19)

If g = l the condition is the same as for private signals.

(ii) Above the threshold, a two-dimensional manifold of memory-one belief-free equilibria

exists given by

σcd = σcc +
σcc − σdd − 1

δ

1− 2ϵ− ϵ(g + l)
g (20)

and

σdc = σdd −
σcc − σdd − 1

δ

1− 2ϵ− ϵ(g + l)
l (21)

(iii) For δ = δBFas all memory-one belief-free equilibrium strategies have the same cooperation

probabilities after nonempty memory-one histories and are σ = (σ∅, 1, (1− g/l), 1, 0) if

l > g, σ = (σ∅, 1, 0, (l/g), 0) if g > l and σ = (σ∅, 1, 0, 1, 0) if g = l. We call this the

threshold memory-one belief-free equilibrium T1BF.

Proof of Proposition 2.3.1. Again the proof follows the same steps as for actions. Let V ai
ajsi

denote player i’s expected payoff for playing ai if player j played aj and observed si in

the previous round (which means player j is in state ajsi). If σaisj denotes the (universal)

probability of player i to play c after {ai, sj}, we get:

V c
as = (1− δ)(σas − (1− σas)l)+

δ ((1− ϵ)σasVcc + ϵσasVcd + (1− ϵ)(1− σas)Vdc + ϵ(1− σas)Vdd) (22)

V d
as = (1− δ)σas(1 + g)+

δ ((1− ϵ)σasVcc + ϵσasVcd + (1− ϵ)(1− σas)Vdc + ϵ(1− σas)Vdd) (23)
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Subtracting (23) from (22) gives:

0 = σas {(1− δ)(l − g) + δ ((1− 2ϵ)Vcc − (1− 2ϵ)Vcd − (1− 2ϵ)Vdc + (1− 2ϵ)Vdd))}

−(1− δ)l + δ ((1− 2ϵ)Vdc − (1− 2ϵ)Vdd)

The conditions on Vcd and Vcc based on the belief-free property are now:

Vdc = Vdd +
(1− δ)l

δ(1− 2ϵ)

Vcc = Vcd +
(1− δ)g

δ(1− 2ϵ)

Solving (22) for σcc and rearranging for Vcc yields

Vcc =
(1− δ)(σcc − (1− σcc)l) + δ(1− σcc)Vdd − δσcc

(1−δ)((1−ϵ)l+ϵg)
δ(1−2ϵ)

+ δ(1− ϵ) (1−δ)l
δ(1−2ϵ)

1− δσcc

Solving (22) for σdd and inserting the solution for Vcc gives

Vdd =
σdd

(
1− (1−δ)ϵl+ϵg

1−2ϵ

)
+ (1− δσcc)

ϵl
1−2ϵ

1 + δσdd − δσcc

Next, all Vas can be eliminated from (22) solved for σdd and σdc proofs (ii). For existence

we need to assure that σcd ∈ (0, 1) and σdc ∈ (0, 1) for a feasible combination of values σcc,

σdd and δ. First assume 1− 2ϵ− ϵ(g + l) > 0 and consider σcd. In this case ∂σcd/∂σcc > 0

and ∂σcd/∂σdd < 0. Note that σcd ≤ 1 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σcd ≥ 0 we use σcc = 1 and σdd = 0. Solving for δ shows gives the condition δ > δBFas

with ϕ = g. Next, we consider σdc still assuming 1− 2ϵ− ϵ(g + l) > 0. Hence ∂σdc/∂σcc < 0

and ∂σdc/∂σdd > 0. Again σdc ≥ 0 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σdc ≤ 1 we use σcc = 1 and σdd = 0 which gives δ > δBFas with ϕ = l. Therefore, if

1− 2ϵ− ϵ(g + l) > 0 the stricter condition on δ results from the larger of the two values g or

l as in (19).

If 1 − 2ϵ − ϵ(g + l) < 0, ∂σcd/∂σcc < 0 and ∂σcd/∂σdd > 0. Using σcc = 1 and σdd = 0

we establish that σcd ≤ 1 only if δ ≥ 1 (and the same can be shown for σdc ≥ 0 when using

σcc = 0 and σdd = 1). Note that (19) also requires δ ≥ 1 in this case. For the last case

1− 2ϵ− ϵ(g + l) = 0, σcd and σdc are not defined and (19) also requires δ ≥ 1. This proofs

(i). To complete the proof, insert (19) together with σcc = 1 and σdd = 0 into (20) and (21)

to obtain the structure of the T1BF response defined by g and l.
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Proposition 2.3.2 [Semi-Grim M1BF Equilibria Conditioning on Action-Signal Combina-

tions]

(i) If players condition on their own action and the ϵ-noisy signal of the other player’s

action, the existence condition for symmetric memory one belief-free equilibria in semi

grim strategies is:

δ ≥ δSGas =
g + l

1− 2ϵ+ (1− ϵ)(g + l)
(24)

(ii) Above this threshold, a continuum σcc ∈ ( g+l
δ(1−2ϵ+(1−ϵ)(g+l)) , 1) of semi-grim equilibria

exists given by:

σdd = σcc −
g + l

δ(1− 2ϵ+ (1− ϵ)(g + l))
(25)

and

σcd = σdc = σcc −
g

δ(1− 2ϵ+ (1− ϵ)(g + l))
(26)

(iii) For δ = δSGas all semi-grim memory-one belief-free equilibrium strategies have the

same cooperation probabilities after nonempty memory-one histories and are σ =

(σ∅, 1, 1− g/(g + l), 1− g/(g + l), 0). If l = g, then σ = (σ∅, 1, 0.5, 0.5, 0).

Proof of Proposition 2.3.2. Using the semi-grim property σcd = σdc for (20) and (21) yields

(25) and (26). Observe that σdd < σcd < 1 for σcc ∈ (0, 1) and for existence σdd must be

positive which can be rearranged to yield (24).

A.3 Renegotiation-Proof and Truthful Communication Equilibria

We give examples for the construction of renegotiation-proof equilibria for the perfect and

imperfect monitoring cases and for a truthful communication equilibrium under imperfect

private monitoring. These equilibria can be described by two states each: (1) a reward

stage, in which both players cooperate, and (2) a punishment stage; and transition rules

between the states. Unlike in equilibria in strongly symmetric strategies, the punisher and the

punished player have to play differently in the punishment stage to assure that this state is

not Pareto-dominated by the reward state. Hence, the continuation values of the two players

will be different once we enter the punishment state. We will use the following notation: Vr
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for the continuation value of the reward state, and Vpp (Vpd) for the continuation value of the

punisher (the punished player) in the punishment state. The following condition has to hold

in any renegotiation-proof equilibrium:

Vpp ≥ Vr (27)

The following condition has to hold in any truthful communication equilibrium, where the

revelation constraints require that the punisher must be indifferent between staying in the

reward state or entering the punishment state as punisher:

Vpp = Vr (28)

A.3.1 Perfect Monitoring

The most simple candidate equilibrium is the following. It starts in the reward state with

both players cooperating. In case of a defection, they enter the punishment state, in which

the player who defected plays C while the other player plays D for one period. After this

period, the game returns to the reward state. For this to be a renegotiation-proof equilibrium,

the following three conditions have to be fulfilled:

1. No player has an incentive to deviate in the reward stage:

1 ≥ (1− δ)(1 + g)− δ(1− δ)l + δ2

2. In the punishment stage, the player being punished has no incentive to deviate:

−(1− δ)l + δ ≥ −δ(1− δ)l + δ2

3. The punisher wants to enter the punishment stage:

(1− δ)(1 + g) + δ ≥ (1− δ)l + δ2

For our experimental parameters it is easy to verify that all three conditions are satisfied.

Hence, our candidate equilibrium is, indeed, an equilibrium.
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A.3.2 Imperfect Public Monitoring

The construction becomes slightly more complicated under imperfect public monitoring.

Renegotiation-proofness criteria can only be applied if players play public strategies, that is,

strategies that condition only on the public history. A special case that has to be considered is

the public signal dd, that occurs with positive probability even when both players cooperate.

The simplest candidate equilibrium is the following. It starts in the reward state with

both players cooperating. In case of a cc or a dd signal, they stay in the reward state. In

case of a dc or cd signal, they transition to the punishment state, in which the player who

appears to have defected plays C, while the other player plays D for one period. In case the

public signal contains a c for the punished, the game returns to the reward state. Otherwise,

the punishment phase is repeated. Note that in comparison to the equilibrium under perfect

monitoring, the incentive to comply as a punished player in the punishment state is weakened

by the positive probability of getting away with playing D and still producing a c signal with

probability ϵ. The continuation payoff of the reward stage of this candidate equilibrium is:

Vr = c+ δ(ϵ2 + (1− ϵ)2)Vr + δ(ϵ(1− ϵ))Vpd + δ((1− ϵ)ϵ)Vpp

where:

Vpd = s+ δ(1− ϵ)Vr + δϵVpd

Vpp = b+ δ(1− ϵ)Vr + δϵVpp

By plugging Vpd and Vpp into Vr and simplifying the equation we get:

Vr =
c(1− δϵ) + δ(1− ϵ)ϵ(b+ s)

(1 + δ − 2δϵ)(1− δϵ)− 2δ(1− ϵ)2

The continuation payoff of deviating from cooperation is:

Vd = b+ 2δϵ(1− ϵ)Vr + δ(1− ϵ)2Vpd + δϵ2Vpp

By plugging Vpd and Vpp into Vd and simplifying the equation we get:

Vd = b+
δϵ2(b+ s)− 2sδϵ

1− δϵ
+
δ(1− ϵ)[2ϵ+ δ(1− ϵ)2 + ϵ2]Vr

1− δϵ

It is easy to verify that with the parameters of our paper, Vr > Vd, and thus no player has

incentive to deviate in the reward stage.

However, the player who is punished in the punishment stage has an incentive to deviate

in the punishment state. His continuation payoffs from complying and deviating are:
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V punished
comply = s+ δ(1− ϵ)Vr + δϵVpd

V punished
deviate = d+ δϵVr + δ(1− ϵ)Vpd

Plugging Vpd and Vr into the two equations above and simplifying yields:

V punished
comply =

s

1− δϵ
+

cδ(1− ϵ)

(1− δ − 2δϵ)(1− δϵ)− 2δ(1− ϵ)2
+

δ2(1− ϵ)2ϵ(b+ s)

(1− δ − 2δϵ)(1− δϵ)2 − 2δ(1− ϵ)2

V punished
deviate =

d+ δϵ− δϵ(d+ s)

1− δϵ
+

δ2(1− ϵ)ϵ(b+ s)(ϵ+ δ − 2δϵ)

(1− δ − 2δϵ)(1− δϵ)2 − 2δ(1− ϵ)2
+

cδ(δ + ϵ− 2δϵ)

(1− δ − 2δϵ)(1− δϵ)− 2δ(1− ϵ)2

With our experimental parameters, the condition V punished
comply ≥V punished

deviate is violated, which

means that the punished player has incentive to deviate in the punishment stage. Hence,

this candidate equilibrium is not an equilibrium in our parametrization.

However, if we add a second round to the punishment state, in which both play D, we

have found a renegotiation-proof equilibrium for our parametrization. The continuation

payoff of the reward stage is still:

Vr = c+ δ(ϵ2 + (1− ϵ)2)Vr + δ(ϵ(1− ϵ))Vpd + δ((1− ϵ)ϵ)Vpp

Since we add a second punishment stage, Vpd and Vpp change to:

Vpd = d+ δ[s+ δ(1− ϵ)Vr + δϵVpd]

Vpp = d+ δ[b+ δ(1− ϵ)Vr + δϵVpp]

By plugging Vpd and Vpp into Vr and simplifying the equation we get:

Vr =
c(1− δ2ϵ) + δϵ(1− ϵ)[2d+ δ(b+ s)]

[1− δ(1− 2ϵ+ 2ϵ2)](1− δ2ϵ)− 2δ3ϵ(1− ϵ)2

The (unchanged) continuation payoff of deviating from cooperation is:

Vd = b+ 2δϵ(1− ϵ)Vr + δ(1− ϵ)2Vpd + δϵ2Vpp
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By plugging Vpd and Vpp into Vd and simplifying the equation we get:

Vd =
δ(1− 2ϵ+ 2ϵ2)d

1− δ2ϵ
+

[1− δ2ϵ(1− ϵ)]b

1− δ2ϵ
+
δ2(1− ϵ)2s

1− δ2ϵ
+

[δϵ(2− δ2ϵ) + δ3(1− ϵ)2](1− ϵ)Vr
1− δ2ϵ

And it is easy to verify that under the parameterization of our paper, Vr > Vd, and thus no

player has incentive to deviate in the reward stage.

Next, we have to check whether the punisher and the player who gets punished have

an incentive to deviate in the punishment stage. The continuation payoff is the same as in

the previous case. For the punisher it is obvious that there is no incentive to deviate in the

punishment stage. For the player who gets punished, the continuation payoff is:

V punished
comply = s+ δ(1− ϵ)Vr + δϵVpd

V punished
deviate = d+ δϵVr + δ(1− ϵ)Vpd

Plugging Vpd and Vr into the two equations and simplifying yields:

V punished
comply =

s+ dδϵ

1− δ2ϵ
+

cδ(1− ϵ)

[1− δ(1− 2ϵ+ 2ϵ2)](1− δ2ϵ)− 2δ3ϵ(1− ϵ)2
+

δ2ϵ(1− ϵ)2[2d+ δ(b+ s)]

[1− δ(1− 2ϵ+ 2ϵ2)](1− δ2ϵ)2 − 2δ3ϵ(1− δ2ϵ)(1− ϵ)2

V punished
deviate = d+

δ(1− ϵ)(d+ sδ)

1− δ2ϵ
+

δ[c(1− δ2ϵ) + δϵ(1− ϵ)(2d+ δ(b+ s))](ϵ− 2δ2ϵ+ δ2)

[1− δ(1− 2ϵ+ 2ϵ2)](1− δ2ϵ)− 2δ3ϵ(1− ϵ)2

With our parameters, V punished
comply ≥V punished

deviate is satisfied. Thus, this candidate equilibrium is,

indeed, a renegotiation-proof equilibrium.

Note that renegotiation-proof equilibria can be constructed in a way that makes them

substantially more efficient than the most efficient equilibrium in strongly-symmetric strategies.

This requires the use of a public randomization device to determine whether or not the

punishment stage is entered after cd or dc signals with a probability less than one, such that

Vpd equals the continuation value of the punishment state with strong symmetry. Efficiency

will then be higher because Vpp ≥ Vr > Vpd. So, even if they are more complicated than

equilibria in strongly-symmetric strategies, players have an incentive to coordinate on them,
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in addition to potential renegotiation concerns.

A.3.3 Imperfect Private Monitoring

Truthful communication equilibria have a similar structure as renegotiation-proof equilibria,

but for a different reason. The condition Vpp = Vr stems from the fact that players must

not have an incentive to lie about their private signal. In other words, reporting a c must

lead to the same continuation value as a report of d. An equilibrium can be constructed

as follows. Players start in the reward state, where they cooperate and report their private

signals truthfully every round, which essentially transforms the game into one of imperfect

public monitoring. Instead of the public signal under public monitoring, the reported signals

are used to determine whether the players stay in the reward state or enter the punishment

state. Unlike under public monitoring, a dd (reported) signal combination cannot be treated

as a cc signal, as this would create an incentive to report d. Instead, the probability of having

to enter the punishment state as the punished player must be independent of the own report.

To this end, the public randomization device can be used to determine which of the two

reports is considered (if any), each with a probability π ≤ 1/2, and never both at the same

time. If a report is considered and the reported signal is c, the game stays in the reward

state. Otherwise, it transitions to the punishment state, in which the player who appeared to

have defected, according to the considered report, becomes the punished player.

The punishment state starts with one period of mutual defection. After this round, the

public randomization device determines whether or not a second round of mutual defection

is entered with probability ρ. In these one or two rounds of mutual defection, no reports

are necessary. In the next and last round of the punishment phase, the punished player

plays C while the punisher plays D. After this round, the punisher reports the signal. If the

punisher reports a d, the punishment phase is repeated, otherwise the players return to the

reward state. With our experimental parameters and π = 0.5 and ρ = 0.0498, it can easily

be verified that this is, indeed, an equilibrium (see below). Moreover, it is an equilibrium

with a strict incentive not to deviate in the reward state. Hence, it survives Heller’s (2017)

stability criteria.

The continuation payoff of the reward stage of the proposed equilibrium is:

Vr = c+ δ(π(1− ϵ)2 + (1− π))Vr + δ(π(1− ϵ)ϵ)Vpp + δπϵVpd

Where:

Vpd = d+ ρ[δd+ δ(δs+ δ(δ(1− ϵ)Vr + δϵVpd))] + (1− ρ)[δs+ δ(δ(1− ϵ)Vr + δϵVpd)]
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is the continuation payoff from being punished. The continuation payoff as a punisher is:

Vpp = d+ ρ[δd+ δ(δb+ δ(δ(1− ϵ)Vr + δϵVpp))] + (1− ρ)[δb+ δ(δ(1− ϵ)Vr + δϵVpp)]

Moreover, the truthful communication constraint has to hold:

Vpp = Vr

We get a solution for ρ by solving the system of equations. With our experimental parameters

and π = 0.5 we get ρ = 0.0498. Moreover, we get:

Vpp = Vr =
d+ δb+ ρδ(d− b+ δb)

1− ρδ3 − (1− ρ)δ2

Vpd =
(1− δ + δπϵ)[δ(1− ρ+ ρδ)b+ (1 + ρδ)d]

δπϵ[1− ρδ3 − (1− ρ)δ2]
− c

δπϵ

Now, we are ready to check whether there are incentives to deviate from following the

proposed equilibrium strategies. First, consider whether players have an incentive to deviate

in the reward stage. The continuation payoff from deviating is:

Vd = b+ δ[πϵ+ (1− π)]Vr + δπ(1− ϵ)Vpd

Plugging Vr, Vpd into the equation above yields:

Vd = b+
[(1 + ρδ)d+ δ(1− ρ+ ρδ)b][1− δ − ϵ+ 2δϵ]

ϵ[1− ρδ3 − (1− ρ)δ2]
− c(1− ϵ)

ϵ

Plugging in π = 0.5 and ρ = 0.0498 we see that Vd < Vr. Thus, there is no incentive to

deviate in the reward stage.

For the punishment stage, we have to check that the punished player has no incentive to

deviate. His continuation payoffs from deviating and complying are as follows:

V punished
deviate = d+ δ(ϵVr + (1− ϵ)Vpd)

V punished
comply = s+ δ((1− ϵ)Vr + ϵVpd)

Plugging Vr, Vpd into these equations, we can verify that the first condition V punished
comply >

V punished
deviate holds for our parameters and π = 0.5.

For the punisher it is obvious that there is no incentive to deviate in the punishment stage

either. Thus, the proposed strategy profile is, indeed, a truthful communication equilibrium.
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Appendix B Communication Content

Table B1: Categories Generated from Subcategories

Frequency in Treatment

Category Subcategories Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

All Supergames

Coordination (C) 1-16,51,52,71,72 0.503 0.958 0.929 0.946 0.341 0.454 0.479 0.93
Deliberation (D) 17-26,34-41,57,70 0.274 0.643 0.643 0.606 0.192 0.219 0.218 0.72
Relationship (R) 30-33,42-45,47-50,58 0.228 0.103 0.181 0.200 0.219 0.270 0.236 0.71
Trivia (T) 53-55 0.605 0.886 0.810 0.711 0.633 0.515 0.552 1.00
Information (I) 27-29,46,56,59-69 0.215 - - - 0.184 0.297 0.285 0.81
Report of action 27,29,46,61,62,66-69 0.008 - - - 0.003 0.020 0.006 0.85
Report of action C 27,29,61,66,68 0.062 - - - 0.054 0.087 0.081 0.77
Report of action D 46,62,67,69 0.058 - - - 0.025 0.070 0.113 0.92
Report of signal 28,56,59,60,66-69 0.141 - - - 0.128 0.187 0.190 0.84
Report of signal c 59,68,69 0.066 - - - 0.028 0.091 0.118 0.91
Report of signal d 28,56,60,66,67 0.204 - - - 0.183 0.273 0.272 0.80

Last 3 Supergames

Coordination (C) 1-16,51,52,71,72 0.404 0.975 0.974 0.973 0.241 0.328 0.381 0.95
Deliberation (D) 17-26,34-41,57,70 0.223 0.543 0.654 0.58 0.146 0.167 0.186 0.68
Relationship (R) 30-33,42-45,47-50,58 0.258 0.117 0.244 0.293 0.208 0.301 0.29 0.7
Trivia (T) 53-55 0.708 0.963 0.91 0.833 0.73 0.641 0.66 1
Information (I) 27-29,46,56,59-69 0.24 - - - 0.176 0.325 0.338 0.79
Report of action 27,29,46,61,62,66-69 0.003 - - - 0.001 0.007 0.002 0.8
Report of action C 27,29,61,66,68 0.066 - - - 0.06 0.083 0.086 0.75
Report of action D 46,62,67,69 0.064 - - - 0.012 0.076 0.139 0.91
Report of signal 28,56,59,60,66-69 0.161 - - - 0.112 0.219 0.232 0.82
Report of signal c 59,68,69 0.067 - - - 0.013 0.083 0.141 0.91
Report of signal d 28,56,60,66,67 0.227 - - - 0.175 0.301 0.318 0.78

Notes: Categories are 1 if the rater identified content related to at least one of the subcategories for a give text unit
and 0 otherwise. Frequency indicates the probability that both raters indicated one of the respective subcategories for a
randomly selected text unit. Frequencies < 0.001 omitted (-). κ̄ is the average Cohen’s Kappa over all treatments. Mean
κ̄ of all generated categories is 0.84.

52



Table B2: Battery of Subcategories for Coding – All Supergames

Frequency in Treatment

# Subcategory Category Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

1 Proposal: both C C 0.246 0.542 0.420 0.500 0.169 0.210 0.231 0.85
2 Proposal: both D C 0.033 0.071 0.077 0.054 0.012 0.039 0.030 0.81
3 Proposal: alternate C 0.013 0.024 0.058 0.066 0.005 0.001 0.013 0.75
4 Proposal: self D other C C 0.010 0.013 0.047 0.031 0.006 0.004 0.008 0.72
5 Proposal: self C other D C 0.005 0.008 0.008 0.009 0.001 0.001 0.010 0.56
6 Proposal: other coordination C 0.006 0.029 0.044 0.017 - 0.005 0.002 0.41
7 Question: what action other C 0.009 0.024 0.025 0.017 0.009 0.005 0.005 0.51
8 Announcement: C C 0.009 0.016 0.047 0.006 0.006 0.006 0.008 0.59
9 Announcement: D C 0.007 0.021 0.014 0.017 0.006 0.006 0.004 0.76
10 Rejection of proposal C 0.004 0.005 0.005 0.017 0.002 0.004 0.002 0.59
11 Acceptance proposal C 0.297 0.685 0.585 0.617 0.189 0.256 0.268 0.85
12 Implicit punishment threat for D C 0.003 0.005 0.003 0.029 - 0.004 0.001 0.33
13 Punishment threat grim C 0.003 0.005 0.014 0.003 0.005 - - 0.57
14 Punishment threat lenient grim C - - - - - - - -
15 Approval of punishment threat C 0.002 - - 0.014 0.002 0.001 0.001 0.41
16 Ask for coordination C 0.041 0.119 0.115 0.120 0.011 0.031 0.041 0.79
17 Benefits of C D 0.051 0.161 0.099 0.151 0.038 0.034 0.035 0.63
18 Benefits of D D 0.007 0.013 0.027 0.023 0.002 0.005 0.005 0.53
19 Benefits of asymmetric play D 0.003 0.003 0.008 0.011 0.002 0.001 0.003 0.50
20 Related to fairness discussion D 0.009 0.040 0.025 0.031 0.002 0.002 0.010 0.66
21 Related to strategic uncertainty D 0.050 0.095 0.206 0.100 0.026 0.042 0.036 0.56
22 Related to payoffs D 0.055 0.188 0.181 0.154 0.029 0.035 0.036 0.71
23 Related to Prisoner’s dilemma D 0.004 0.058 0.003 - 0.002 - - 0.84
24 Related to game theory D 0.002 0.011 0.005 0.009 - 0.001 - 0.54
25 Future benefit of C D 0.009 0.016 0.019 0.054 0.006 0.007 0.003 0.49
26 Short term incentives of D D - 0.005 - - - - - 0.05
27 Attribute other d to randomness I 0.004 - - - 0.006 0.006 0.002 0.34
28 Attribute own d to randomness I 0.006 - - - 0.010 0.007 0.005 0.36
29 Assurance to have played C I 0.002 - - - - 0.003 0.003 0.21
30 Promise R 0.021 0.040 0.069 0.077 0.014 0.015 0.013 0.71
31 Distrust R 0.002 0.005 - - 0.002 0.001 0.002 0.27
32 Trust R 0.012 0.016 0.019 0.023 0.011 0.010 0.012 0.63
33 Argue for trustworthy behavior R 0.026 0.048 0.102 0.111 0.021 0.011 0.014 0.62
34 Report payoff from past games D 0.028 0.063 0.022 0.006 0.030 0.025 0.027 0.72
35 Report signals of past games D 0.013 0.042 - 0.009 0.013 0.014 0.011 0.42
36 Good past experience with CC D 0.051 0.151 0.126 0.100 0.028 0.048 0.037 0.75
37 Good past experience with DD D 0.001 0.003 0.003 0.003 - 0.002 0.001 0.43
38 Bad past experience with CC D 0.008 0.021 0.060 0.014 0.002 0.001 0.007 0.44
39 Bad past experience with CC D - - 0.003 - - 0.001 0.001 0.24
40 Good past experience asym. play D 0.001 0.005 0.011 0.003 - - 0.001 0.53
41 Bad past experience asym. play D 0.001 0.003 0.003 0.006 - 0.002 - 0.52
42 Positive feedback after CC R 0.119 - - - 0.115 0.167 0.143 0.81
43 Positive feedback after DD R 0.002 - - - 0.002 0.003 0.001 0.65
44 Positive feedback after asym. play R 0.001 - - - 0.001 0.002 0.002 0.64
45 Empathy R 0.016 - 0.003 - 0.014 0.022 0.020 0.57
46 Confess D I - - - - - 0.001 - 0.40
47 Apology R 0.002 - - - 0.004 0.001 0.001 0.48
48 Justification of play R 0.001 - - - 0.003 0.001 - 0.19
49 Accusation of cheating R 0.007 - - - 0.004 0.008 0.014 0.55
50 Verbal punishment R 0.001 - - - 0.001 0.001 - 0.57
51 Renegotiation C 0.001 - - - - 0.001 0.001 0.06
52 Argument against punishment C - - - - - - - -
53 Small talk T 0.247 0.820 0.739 0.583 0.176 0.141 0.168 0.70
54 Off topic T 0.283 0.193 0.093 0.094 0.368 0.229 0.330 0.58
55 Boredom T 0.011 0.021 - 0.014 0.012 0.012 0.010 0.57
56 Disappointed after d signal I 0.024 - - - 0.029 0.030 0.025 0.55
57 Confusion D 0.033 0.058 0.085 0.026 0.015 0.036 0.037 0.35
58 Motivational talk R 0.026 - - - 0.030 0.041 0.022 0.51
59 Report: own signal c I 0.004 - - - 0.001 0.006 0.008 0.65
60 Report: own signal d I 0.012 - - - 0.005 0.021 0.016 0.82
61 Report: own action C I 0.005 - - - 0.001 0.013 0.005 0.50
62 Report: own action D I 0.003 - - - - 0.009 0.001 0.78
63 Ask for others payoff I 0.019 - - - 0.010 0.023 0.035 0.83
64 Ask for others signal I 0.006 - - - 0.003 0.004 0.014 0.45
65 Ask for others action I 0.006 - - - 0.003 0.011 0.007 0.85
66 Report: own payoff 0 I 0.025 - - - 0.012 0.032 0.047 0.95
67 Report: own payoff 17 I 0.004 - - - 0.002 0.009 0.003 0.90
68 Report: own payoff 30 I 0.022 - - - 0.011 0.016 0.051 0.96
69 Report: own payoff 37 I 0.001 - - - 0.001 0.002 0.001 0.73
70 Being cheated on in past games D 0.005 - - 0.003 0.003 0.007 0.006 0.45
71 Counter-proposal C - - - - - 0.001 0.001 0.46
72 Rejection of punishment C - - 0.003 - - - - 0.67

Notes: Subcategories are 1 if the rater identified content related to the subcategory for a given text unit and 0 otherwise.
Category are Coordination (C), Deliberation (D), Relationship (R), Trivia (T) and Information (I). Frequency indicates
the probability that both raters indicated the respective subcategory for a randomly selected text unit. Frequencies < 0.001
omitted (-). κ̄ is the average Cohen’s Kappa over all treatments. Mean κ̄ of all subcategories with an overall frequency
> 0.01 is 0.65.
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Table B3: Battery of Subcategories for Coding – Last Three Supergames

Frequency in Treatment

# Subcategory Category Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

1 Proposal: both C C 0.224 0.673 0.487 0.613 0.131 0.177 0.195 0.88
2 Proposal: both D C 0.01 0.012 0.058 0.013 0.004 0.011 0.005 0.78
3 Proposal: alternate C 0.005 0.025 0.032 0.013 - - 0.007 0.75
4 Proposal: self D other C C 0.002 - 0.026 - - - 0.004 0.76
5 Proposal: self C other D C 0.002 - 0.006 0.007 - - 0.005 0.64
6 Proposal: other coordination C 0.005 0.012 0.071 0.007 - 0.002 - 0.56
7 Question: what action other C 0.003 - 0.026 0.007 0.001 - 0.005 0.44
8 Announcement: C C 0.007 0.006 0.058 - 0.002 0.004 0.01 0.54
9 Announcement: D C 0.001 0.006 0.019 - - - 0.001 0.83
10 Rejection of proposal C 0.003 0.006 0.006 0.013 - 0.003 0.002 0.6
11 Acceptance proposal C 0.246 0.747 0.59 0.66 0.15 0.185 0.207 0.88
12 Implicit punishment threat for D C 0.003 0.006 - 0.033 0.001 0.003 - 0.28
13 Punishment threat grim C 0.002 - - 0.007 0.005 - - 0.52
14 Punishment threat lenient grim C - - - - - - - -
15 Approval of punishment threat C 0.002 - - 0.027 0.002 - - 0.4
16 Ask for coordination C 0.022 0.062 0.096 0.093 0.004 0.01 0.024 0.79
17 Benefits of C D 0.04 0.123 0.122 0.167 0.024 0.025 0.026 0.62
18 Benefits of D D 0.001 - 0.006 0.007 - 0.001 - 0.28
19 Benefits of asymmetric play D - - 0.006 - - - - 0.4
20 Related to fairness discussion D 0.007 0.037 0.019 0.033 0.002 - 0.008 0.66
21 Related to strategic uncertainty D 0.036 0.068 0.237 0.093 0.013 0.028 0.024 0.54
22 Related to payoffs D 0.032 0.136 0.147 0.113 0.01 0.02 0.02 0.71
23 Related to Prisoner’s dilemma D 0.003 0.056 - - 0.002 - - 0.88
24 Related to game theory D 0.001 0.012 - 0.013 0.001 - - 0.71
25 Future benefit of C D 0.007 0.006 0.013 0.067 0.006 0.006 0.001 0.54
26 Short term incentives of D D - - - - - - - -
27 Attribute other d to randomness I 0.004 - - - 0.005 0.006 0.002 0.31
28 Attribute own d to randomness I 0.006 - - - 0.01 0.004 0.005 0.3
29 Assurance to have played C I 0.002 - - - - 0.003 0.005 0.22
30 Promise R 0.026 0.062 0.103 0.12 0.015 0.017 0.012 0.72
31 Distrust R 0.002 0.006 - - 0.002 0.001 0.003 0.36
32 Trust R 0.012 0.006 0.019 0.02 0.012 0.006 0.016 0.6
33 Argue for trustworthy behavior R 0.029 0.062 0.135 0.18 0.014 0.012 0.015 0.61
34 Report payoff from past games D 0.025 0.043 0.019 - 0.024 0.023 0.03 0.65
35 Report signals of past games D 0.017 0.062 - 0.02 0.014 0.016 0.014 0.44
36 Good past experience with CC D 0.055 0.142 0.179 0.167 0.029 0.048 0.039 0.73
37 Good past experience with DD D 0.001 0.006 0.006 - - - - 0.36
38 Bad past experience with CC D 0.01 0.019 0.109 0.033 0.001 - 0.007 0.43
39 Bad past experience with CC D 0.001 - - - - 0.001 0.001 0.31
40 Good past experience asym. play D 0.001 - 0.013 - - - - 0.5
41 Bad past experience asym. play D 0.001 - - - - 0.002 - 0.67
42 Positive feedback after CC R 0.14 - - - 0.11 0.201 0.178 0.8
43 Positive feedback after DD R 0.001 - - - 0.001 - 0.001 0.44
44 Positive feedback after asym. play R - - - - - - - -
45 Empathy R 0.02 - - - 0.017 0.025 0.029 0.59
46 Confess D I - - - - - 0.001 - 1
47 Apology R - - - - 0.001 - - 0.15
48 Justification of play R 0.001 - - - 0.001 0.001 - 0.12
49 Accusation of cheating R 0.009 - - - 0.002 0.01 0.018 0.61
50 Verbal punishment R - - - - - 0.001 - 0.29
51 Renegotiation C 0.001 - - - - - 0.002 0.05
52 Argument against punishment C - - - - - - - -
53 Small talk T 0.241 0.92 0.821 0.66 0.156 0.127 0.177 0.66
54 Off topic T 0.394 0.315 0.122 0.14 0.473 0.342 0.455 0.58
55 Boredom T 0.014 0.043 - 0.02 0.016 0.012 0.011 0.52
56 Disappointed after d signal I 0.029 - - - 0.039 0.038 0.021 0.56
57 Confusion D 0.022 0.031 0.006 0.027 0.012 0.023 0.031 0.25
58 Motivational talk R 0.028 - - - 0.027 0.046 0.026 0.49
59 Report: own signal c I 0.002 - - - - 0.003 0.005 0.5
60 Report: own signal d I 0.01 - - - 0.002 0.016 0.017 0.8
61 Report: own action C I 0.005 - - - - 0.011 0.005 0.43
62 Report: own action D I 0.001 - - - - 0.002 0.001 0.75
63 Ask for others payoff I 0.018 - - - 0.006 0.017 0.04 0.77
64 Ask for others signal I 0.002 - - - 0.002 0.002 0.003 0.2
65 Ask for others action I 0.004 - - - 0.002 0.006 0.006 0.82
66 Report: own payoff 0 I 0.028 - - - 0.01 0.034 0.054 0.94
67 Report: own payoff 17 I 0.001 - - - - 0.004 0.001 0.91
68 Report: own payoff 30 I 0.023 - - - 0.002 0.017 0.063 0.96
69 Report: own payoff 37 I 0.001 - - - 0.001 0.001 - 0.67
70 Being cheated on in past games D 0.008 - - - 0.004 0.011 0.012 0.47
71 Counter-proposal C - - - - - - 0.001 0.33
72 Rejection of punishment C - - - - - - - -

Notes: See notes of Table B2. Data from last three supergames.
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Table B4: Communication after First Defection Signal - All Supergames

Public Repeated Private Repeated

Category d signal c signals diff p-value d signal c signal diff p-value
Coordination 0.45 0.29 0.17 0.01 0.48 0.29 0.19 0.01
Deliberation 0.12 0.13 -0.01- 0.85 0.08 0.09 -0.01- 0.85
Relationship 0.26 0.40 -0.14- 0.03 0.24 0.32 -0.08- 0.26
Information 0.66 0.34 0.33 0.00 0.64 0.34 0.29 0.00
Trivia 0.38 0.53 -0.15- 0.00 0.39 0.54 -0.15- 0.04
Report of action 0.41 0.02 0.39 0.00 0.44 0.09 0.35 0.00
Report of C 0.40 0.02 0.38 0.00 0.44 0.09 0.35 0.00
Report of D - - - - - - - -
Report of signal 0.56 0.33 0.23 0.00 0.64 0.33 0.31 0.00
Report of c 0.09 0.33 -0.24- 0.00 0.01 0.32 -0.31- 0.00
Report of d 0.48 - - - 0.64 0.00 0.63 0.00

Notes: Frequency of communication categories for subject-round observations with cooperative history of both
players up to round t. A participant has a cooperative history if all her previous actions were C and all signals
she observed in rounds < t were c. Columns compare the communication in round t+ 1 conditional on the
signals received in round t. Frequencies indicate the probability that both raters indicated the category for a
text unit. P-values derived from logit models with standard errors clustered on participant and match. Zero
frequencies omitted (-).

Appendix C Strategy Estimation

We use the strategy frequency estimation method (Dal Bó and Fréchette, 2011) and its

adaptation to behavior strategies (Breitmoser, 2015) to analyze participants’ strategies across

treatments. The estimation is perfomed with the R package stratEst (Dvorak, 2021). A

detailed documentation of the method can be found in Dvorak (2020).

Model Definition

Let pk denote the share of strategy k ∈ {1, · · · , K} in the population and πsk ∈ [0, 1] the

probability of cooperation prescribed by strategy k in state sk ∈ Sk. When estimating pure

strategies, we assume that there exists a pure underlying response probability ξsk ∈ {0, 1}
to each πsk . The pure responses are confounded by a tremble which implements the wrong

action and occurs with probability γ ∈ [0, 0.5]. We assume that the probability of a tremble

is the same for all individuals, supergames and rounds and that the realizations of trembles

are independent across these dimensions.20 The probability of cooperation for pure strategy

20See Bland (2020) for a recent adaptation of SFEM which allows for heterogeneity in the trembles.
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Table B5: Communication after First Defection Signal – All Supergames

Public Repeated Private Repeated

# Subcategory d signal c signals diff d signal c signal diff

1 Proposal: both C 0.164 0.145 0.019 0.168 0.143 0.025
2 Proposal: both D 0.013 0.012 0.001 - 0.011 -0.011-
3 Proposal: alternate - - - - 0.005 -0.005-
4 Proposal: self D other C - - - 0.017 0.003 0.014
5 Proposal: self C other D 0.007 - 0.007 - - -
6 Proposal: other coordination - 0.004 -0.004- - - -
7 Question: what action other - - - - - -
8 Announcement: C 0.007 0.002 0.005 0.025 0.003 0.022
9 Announcement: D 0.007 - 0.007 - - -
10 Rejection of proposal - - - - 0.002 -0.002-
11 Acceptance proposal 0.178 0.164 0.014 0.143 0.165 -0.022-
12 Implicit punishment threat for D - - - - 0.002 -0.002-
13 Punishment threat grim - - - - - -
14 Punishment threat lenient grim - - - - - -
15 Approval of punishment threat - - - - 0.002 -0.002-
16 Ask for coordination 0.013 0.004 0.009 0.025 0.005 0.02
17 Benefits of C 0.007 0.008 -0.001- 0.008 0.017 -0.009-
18 Benefits of D - - - - - -
19 Benefits of asymmetric play - - - - - -
20 Related to fairness discussion - - - - - -
21 Related to strategic uncertainty 0.013 0.017 -0.004- 0.025 0.011 0.014
22 Related to payoffs 0.013 0.006 0.007 0.017 0.016 0.001
23 Related to Prisoner’s dilemma - - - - - -
24 Related to game theory - 0.002 -0.002- - - -
25 Future benefit of C 0.007 0.002 0.005 0.008 0.002 0.006
26 Short term incentives of D - - - - - -
27 Attribute other d to randomness 0.033 - 0.033 - 0.002 -0.002-
28 Attribute own d to randomness 0.053 - 0.053 0.042 - 0.042
29 Assurance to have played C - - - 0.008 0.003 0.005
30 Promise - 0.012 -0.012- 0.008 - 0.008
31 Distrust - - - 0.008 - 0.008
32 Trust 0.013 0.006 0.007 0.084 0.003 0.081
33 Argue for trustworthy behavior 0.013 - 0.013 - 0.003 -0.003-
34 Report payoff from past games - 0.019 -0.019- 0.008 0.003 0.005
35 Report signals of past games - 0.004 -0.004- - 0.005 -0.005-
36 Good past experience with CC - 0.017 -0.017- - 0.002 -0.002-
37 Good past experience with DD - - - - - -
38 Bad past experience with CC - - - - - -
39 Bad past experience with CC - - - - 0.002 -0.002-
40 Good past experience asym. play - - - - - -
41 Bad past experience asym. play - - - - - -
42 Positive feedback after CC - 0.321 -0.321- 0.017 0.233 -0.216-
43 Positive feedback after DD - - - - - -
44 Positive feedback after asym. play - - - 0.008 0.002 0.006
45 Empathy 0.132 - 0.132 - 0.027 -0.027-
46 Confess D - - - - - -
47 Apology - 0.002 -0.002- - - -
48 Justification of play - - - - - -
49 Accusation of cheating 0.046 - 0.046 0.143 - 0.143
50 Verbal punishment 0.007 - 0.007 - - -
51 Renegotiation - 0.002 -0.002- - - -
52 Argument against punishment - - - - - -
53 Small talk 0.02 0.014 0.006 0.059 0.046 0.013
54 Off topic 0.118 0.269 -0.151- 0.151 0.38 -0.229-
55 Boredom - 0.015 -0.015- - 0.008 -0.008-
56 Disappointed after d signal 0.191 - 0.191 0.185 - 0.185
57 Confusion 0.059 0.044 0.015 - 0.027 -0.027-
58 Motivational talk 0.033 0.089 -0.056- 0.008 0.029 -0.021-
59 Report: own signal c 0.007 0.004 0.003 0.008 0.008 -
60 Report: own signal d 0.151 - 0.151 0.16 0.002 0.158
61 Report: own action C 0.092 0.004 0.088 0.008 0.006 0.002
62 Report: own action D - - - - - -
63 Ask for others payoff 0.086 0.008 0.078 0.059 0.035 0.024
64 Ask for others signal 0.013 0.002 0.011 0.034 0.016 0.018
65 Ask for others action 0.066 - 0.066 0.042 - 0.042
66 Report: own payoff 0 0.197 - 0.197 0.395 0.003 0.392
67 Report: own payoff 17 - - - - - -
68 Report: own payoff 30 0.066 0.015 0.051 - 0.076 -0.076-
69 Report: own payoff 37 - - - - - -
70 Being cheated on in past games - 0.006 -0.006- - 0.003 -0.003-
71 Counter-proposal - - - - 0.002 -0.002-
72 Rejection of punishment - - - - - -

Notes: Frequency of subcategories for subject-round observations with cooperative history in round t. A Subject has a
cooperative history if her previous actions were C and all signals she observed in rounds < t were c. Frequencies illustrate
the use of subcategories dependent on signals in round t. Frequency indicates the probability that both raters indicated
the respective subcategory for a randomly selected text unit. Frequencies < 0.001 omitted (-).
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Table B6: Communication after First Defection Signal – Last Three Supergames

Public Repeated Private Repeated

# Subcategory d signal c signals diff d signal c signal diff

1 Proposal: both C 0.136 0.094 0.042 0.182 0.112 0.07
2 Proposal: both D - 0.01 -0.01 - 0.013 -0.013
3 Proposal: alternate - - - - 0.005 -0.005
4 Proposal: self D other C - - - - 0.005 -0.005
5 Proposal: self C other D - - - - - -
6 Proposal: other coordination - - - - - -
7 Question: what action other - - - - - -
8 Announcement: C - 0.003 -0.003 0.03 0.005 0.025
9 Announcement: D - - - - - -
10 Rejection of proposal - - - - 0.003 -0.003
11 Acceptance proposal 0.123 0.094 0.029 0.121 0.142 -0.021
12 Implicit punishment threat for D - - - - - -
13 Punishment threat grim - - - - - -
14 Punishment threat lenient grim - - - - - -
15 Approval of punishment threat - - - - - -
16 Ask for coordination - - - 0.045 0.003 0.042
17 Benefits of C - - - - 0.013 -0.013
18 Benefits of D - - - - - -
19 Benefits of asymmetric play - - - - - -
20 Related to fairness discussion - - - - - -
21 Related to strategic uncertainty - 0.01 -0.01 - 0.003 -0.003
22 Related to payoffs 0.012 0.006 0.006 0.015 0.008 0.007
23 Related to Prisoner’s dilemma - - - - - -
24 Related to game theory - - - - - -
25 Future benefit of C 0.012 0.003 0.009 - - -
26 Short term incentives of D - - - - - -
27 Attribute other d to randomness 0.037 - 0.037 - - -
28 Attribute own d to randomness 0.025 - 0.025 0.045 - 0.045
29 Assurance to have played C - - - 0.015 0.005 0.01
30 Promise - 0.01 -0.01 - - -
31 Distrust - - - 0.015 - 0.015
32 Trust 0.025 0.003 0.022 0.136 0.005 0.131
33 Argue for trustworthy behavior 0.025 - 0.025 - 0.003 -0.003
34 Report payoff from past games - 0.026 -0.026 - - -
35 Report signals of past games - 0.003 -0.003 - 0.008 -0.008
36 Good past experience with CC - 0.023 -0.023 - 0.003 -0.003
37 Good past experience with DD - - - - - -
38 Bad past experience with CC - - - - - -
39 Bad past experience with CC - - - - 0.003 -0.003
40 Good past experience asym. play - - - - - -
41 Bad past experience asym. play - - - - - -
42 Positive feedback after CC - 0.314 -0.314 - 0.254 -0.254
43 Positive feedback after DD - - - - - -
44 Positive feedback after asym. play - - - - - -
45 Empathy 0.16 - 0.16 - 0.037 -0.037
46 Confess D - - - - - -
47 Apology - - - - - -
48 Justification of play - - - - - -
49 Accusation of cheating 0.074 - 0.074 0.182 - 0.182
50 Verbal punishment 0.012 - 0.012 - - -
51 Renegotiation - - - - - -
52 Argument against punishment - - - - - -
53 Small talk 0.025 - 0.025 0.091 0.064 0.027
54 Off topic 0.185 0.353 -0.168 0.197 0.479 -0.282
55 Boredom - 0.01 -0.01 - - -
56 Disappointed after d signal 0.235 - 0.235 0.136 - 0.136
57 Confusion 0.062 0.036 0.026 - 0.035 -0.035
58 Motivational talk 0.049 0.071 -0.022 - 0.024 -0.024
59 Report: own signal c - 0.003 -0.003 - 0.005 -0.005
60 Report: own signal d 0.111 - 0.111 0.121 0.003 0.118
61 Report: own action C 0.086 - 0.086 0.015 0.011 0.004
62 Report: own action D - - - - - -
63 Ask for others payoff 0.062 - 0.062 0.091 0.045 0.046
64 Ask for others signal - 0.003 -0.003 - 0.003 -0.003
65 Ask for others action 0.049 - 0.049 0.045 - 0.045
66 Report: own payoff 0 0.21 - 0.21 0.5 0.003 0.497
67 Report: own payoff 17 - - - - - -
68 Report: own payoff 30 0.074 0.006 0.068 - 0.091 -0.091
69 Report: own payoff 37 - - - - - -
70 Being cheated on in past games - 0.01 -0.01 - 0.005 -0.005
71 Counter-proposal - - - - 0.003 -0.003
72 Rejection of punishment - - - - - -

Notes: See notes of Table B5. Data from last three supergames.
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Table B7: Frequency and Truthfulness of Private Information Exchange - All Supergames

Public Private

p(report) p(true) p(report) p(true)

Actions
Report of action 0.11 0.94 0.14 0.89
Report of C 0.09 0.95 0.14 0.88
Report of D 0.02 0.97 0.01 1.00
Report of C if ωi = d 0.11 0.83 0.14 0.61
D and report of D if ωi = d 0.12 1.00 0.03 1.00
C and report of C ωi = d 0.30 1.00 0.30 1.00
D and report of C if ωi = d 0.03 0.00 0.08 0.00

Signals
Report of signal - - 0.33 0.95
Report of c - - 0.23 0.98
Report of d - - 0.10 0.86
Report of d if ω−i = d - - 0.33 -

Notes: Frequencies of coding in all participant-round observations after round one for the repeated
communication treatments with public monitoring (columns 2 and 3) and private monitoring
(columns 4 and 5). A coding is considered valid if both raters indicated the same sub-category for
a participant-round observation. Values might not add up as expected due to rounding.

Table B8: Private Information Exchange and Mutual Cooperation - All Supergames

Public Private

estimate std. error p-value estimate std. error p-value

intercept -0.14 0.23 0.55 -0.76 0.32 0.02
Report of C 0.65 0.36 0.07 2.42 1.16 0.04
Report of d - - - 1.42 0.41 0.00
Report of C × Report of d - - - -2.12 1.15 0.06
Trivia 0.76 0.30 0.01 -0.12 0.32 0.70

Notes: Table shows coefficients of logit models with standard errors clustered on participant and
match. Report of C is a dummy that indicates if C is reported by the player for whom the signal
indicated d in the last round. Report of d is a dummy that indicates whether the defection signal
was reported by the player who received the signal. Data of all supergames. A coding is considered
valid if both raters indicated the same sub-category for a participant-round observation.
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k in state sk is given by: πsk = ξsk(1− γ) + (1− ξsk)(1− γ). Let yisk denote the number of

times individual i ∈ {1, · · · , N} cooperates in nisk observations of state sk of strategy k. We

report the maximum-likelihood estimates of the parameters pk, πsk (or alternatively ξsk and

γ) that maximize the log-likelihood

lnL =
N∑
i=1

ln

(
K∑
k=1

pk
∏
sk∈Sk

(πsk)
yisk (1− πsk)

nisk
−yisk

)
.

To find the global optima of the parameters, we execute the EM-algorithm (Dempster et al.,

1977) from multiple random starting points and use the Newton-Raphson method to check

for convergence.

To obtain the results reported in Table C1, we perform treatment-wise strategy estimation

starting with the candidate set of 24 strategies listed in Tables C2-C5. We assume that all

strategies of the same model condition on the same information and report the model with

the highest likelihood. The strategies fitted to the data of the perfect monitoring treatments

condition on the action profile {ai, a−i} observed in the previous round. The strategies fitted

to the data of the imperfect monitoring treatments condition on the action-signal profile

{ai, ω−i} observed in the previous round.

SFEM Results

Table C1 depicts the estimated strategy shares and standard errors. The main result of the

strategy estimation is that the shares of lenient and forgiving strategies increase substantially

with communication under all three monitoring structures. Under imperfect monitoring,

repeated communication further increases the use of lenient and forgiving strategies.

Adaptation of Strategies

Tables C2-C5 list the set of 24 strategies used to obtain the strategy estimation results

reported in Table C1. Circles in Table C4 represent strategy states and arrows deterministic

state transitions. In the treatments with perfect monitoring, the state traditions can in

principle be triggered by action profiles, the two public signals or action-signal combinations.

In the treatments with public monitoring, transitions can be triggered by the two public

signals or action-signal combinations. We assume that all strategies in the set condition on

the same information, run the estimation for the 3 (2) possibilities and report the results

with the highest log-likelihood.
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Table C1: Strategy Frequency Estimation

Perfect Public Private

lenient/forgiving No Pre Rep No Pre Rep No Pre Rep

ALLD no 0.42 - - 0.61 0.02 - 0.50 0.02 -
(0.07) - - (0.08) (0.02) - (0.07) (0.02) -

ALLC yes - - - - - 0.32 - - 0.27
- - - - - (0.19) - - (0.20)

DC no - - - - - - - - -
- - - - - - - - -

FC no - - - - 0.08 0.01 - - -
- - - - (0.04) (0.02) - - -

GRIM no 0.08 0.23 - - 0.02 - 0.03 - -
(0.06) (0.16) - - (0.02) - (0.04) - -

TFT yes 0.08 - - 0.03 - - - - -
(0.06) - - (0.04) - - - - -

PTFT yes - - 0.17 - - - - - -
- - (0.18) - - - - - -

T2 yes - - - - - - - - -
- - - - - - - - -

TF2T yes - - - 0.01 0.01 - - 0.07 0.07
- - - (0.02) (0.04) - - (0.09) (0.08)

TF3T yes - - - - - - - - -
- - - - - - - - -

T2FT yes - - - - 0.04 - - 0.05 -
- - - - (0.04) - - (0.06) -

T2F2T yes 0.04 - 0.40 - 0.15 - - 0.24 0.09
(0.03) - (0.21) - (0.10) - - (0.15) (0.10)

GRIM2 yes - - 0.44 - 0.20 0.21 0.19 0.10 0.15
- - (0.20) - (0.10) (0.15) (0.07) (0.14) (0.09)

GRIM3 yes - - - 0.04 0.02 0.32 - 0.01 0.12
- - - (0.03) (0.04) (0.18) - (0.06) (0.17)

PT2FT yes - - - - - - - - -
- - - - - - - - -

DTFT yes 0.12 - - - - - - - -
(0.06) - - - - - - - -

DTF2T yes 0.02 - - 0.07 - - - - -
(0.02) - - (0.04) - - - - -

DTF3T yes - - - - - - - - -
- - - - - - - - -

DGRIM2 yes - - - 0.02 - - 0.01 - -
- - - (0.04) - - (0.02) - -

DGRIM3 yes - - - - - - - - -
- - - - - - - - -

SGRIM yes 0.09 - - 0.09 - 0.04 0.24 0.22 0.05
(0.08) - - (0.06) - (0.04) (0.09) (0.11) (0.05)

M1BF yes - - - 0.03 0.38 - - 0.10 0.08
- - - (0.05) (0.10) - - (0.09) (0.09)

T1BFas yes 0.11 0.77 - 0.05 - 0.06 - 0.07 0.13
(0.07) (0.28) - (0.05) - (0.05) - (0.08) (0.09)

RAND no 0.03 - - 0.05 0.08 0.05 0.03 0.11 0.03
(0.03) - - (0.03) (0.05) (0.04) (0.04) (0.05) (0.03)∑

lenient/forgiving 0.46 0.77 1.00 0.34 0.79 0.94 0.45 0.87 0.97
(0.09) (0.16) (0.01) (0.08) (0.06) (0.04) (0.08) (0.06) (0.04)

γ 0.06 0.01 0.01 0.07 0.06 0.03 0.05 0.02 0.04
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: Treatment-wise maximum-likelihood shares of the 24 strategies listed in Tables C2-C5 assuming
constant strategy use over the last three supergames. Strategies condition on action profiles in perfect
treatments, and on action-signal profiles in public and private treatments. γ indicates the probability
of a tremble. Zero shares are omitted (-). Analytic standard errors in parentheses. Values might not
add up as expected due to rounding.
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Strategies 1-20 and their descriptions are taken from Fudenberg et al. (2012). The

remaining four strategies are behavior strategies. Two of the behavior strategies are motivated

by Backhaus and Breitmoser’s (2021) analysis, who present evidence suggesting that subjects

play semi-grim M1BF strategies, and further find that a small share of (noise) players

randomize 50–50 in all states. Taking these findings into account, we include a strategy

RAND that predicts a 50% cooperation probability after all histories. We also include a

semi-grim strategy SGRIM which starts with cooperation and cooperates with probability

of 1 in the cc-state, probability 0 in the dd-state, and probability 0.35 in the cd and dc

states. The value 0.35 is the average cooperation probability that Backhaus and Breitmoser

(2021) report for these states in the lower panel of Table 1 of their paper. We choose this

value instead of estimating the probability from our data, as this would give the strategy an

additional free parameter and therefore an advantage over the other strategies in the set.

The third behavioral strategy that we include is a M1BF strategy that conditions on the

observed actions (σ∅ = 1, σcc = 1, σcd = 0.75, σdc = 0.5, σdd = 0). The M1BF strategy results

for δ = 0.8 when assuming that subjects start with cooperation, cooperate after mutual

cooperation, and defect after mutual defection. The fourth behavior strategy that we include

is the T1BF strategy that which conditions on the own action and the signal about the

action of the partner in the previous round (σ∅ = 1, σcc = 1, σcd = 0.5, σdc = 1, σdd = 0). The

behavior of T1BFas after round one is the unique behavior of all memory-one belief-free

equilibrium strategies that can be played under imperfect monitoring (see Appendix A for

the derivation of these equilibrium strategies).
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Table C2: Strategies 1-7

Acronym Description Automaton

ALLD Always play D. D

ALLC Always play C. C

DC Start with D, then alternate between C and D. D C

FC Play C in the first round, then D forever. C D

Grim
Play C until either player plays D, then play D
forever.

C

cd, dd, dd

cc D

TFT Play C unless partner played D last round. C

cd, dd

cc, dc

cc,

dc

cd,

ddD

PTFT
(WSLS)

Play C if both players chose the same move last
round, otherwise play D.

C

cd, dc

cc, dd

cc,

dd

cd,

dcD

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C and D
indicate whether the automaton prescribes cooperation or defection in the state. Arrows represent deterministic state
transitions. The labels indicate the information profiles of the previous periods which trigger the transitions. An unlabeled
arrows indicates an unconditional transition that occurs independent of the observed profile.
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Table C3: Strategies 8-15

Acronym Description Automaton

T2
Play C until either player plays D, then play D
twice and return to C (regardless of all actions
during the punishment rounds).

C

cd, dd, dd

cc D D

TF2T
Play C unless partner played D in both of the last
2 rounds.

C
cc,

dc

cd, dd

cd, dd

cc, dc

cc, dc

dc

cd,

ddC D

TF3T
Play C unless partner played D in all of the last 3
rounds.

C
cc,

cc, dc

dc

cd, dd

cd, ddcd, dd

cc, dc

cc, dc

dc

cd,

ddC C D

T2FT
Play C unless partner played D in either of the
last 2 rounds (2 rounds of punishment if partner
plays D).

D
cc,

dc

cc, dc

cd, dd cd, dd

cc, dc

cd, dd

dcC D

T2F2T
Play C unless partner played 2 consecutive Ds
in the last 3 rounds (2 rounds of punishment if
partner plays D twice in a row).

D
cc,

dc

cc,

dc

cc, dc

cd, dd cd, dd

cc, dc

cd, dd

cc, dc

cd, dd

dcCC D

GRIM2
Play C until 2 consecutive rounds occur in which
either player played D, then play D forever.

C

cc cd, dd, dd

cd, dd, dd

cc C D

GRIM3
Play C until 3 consecutive rounds occur in which
either player played D, then play D forever.

C

cc

cc

cd, dd, dd

cd, dd, dd cd, dd, dd

cc C C D

PT2FT

Play C if both players played C in the last 2 rounds,
both players played D in the last 2 rounds, or both
players played D 2 rounds ago and C last round.
Otherwise play D.

D

cc, dd

cc, dd

cd, dc

cd, dc

cd, dc

cc,

dd C D

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C and D
indicate whether the automaton prescribes cooperation or defection in the state. Arrows represent deterministic state
transitions. The labels indicate the information profiles of the previous periods which trigger the transitions. An unlabeled
arrows indicates an unconditional transition that occurs independent of the observed profile.
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Table C4: Suspicious Strategies 16-20

Acronym Description Automaton

DTFT Play D in the first round, then play TFT. D

cc, dc

cd, dd

cd,

dd

cc,

dcC

DTF2T Play D in the first round, then play TF2T. C
cc,

dc

cd, dd

cd, dd

cc, dc

cc, dc

dc

cd,

dd

cc, dc

cc, dc

cd, dd

C DD

DTF3T Play D in the first round, then play TF3T. C
cc,

cc, dc

dc

cd, dd

cd, ddcd, dd

cc, dc

cc, dc

dc

cd,

dd

cc, dc

cc, dc

cd, dd

C C DD

DGRIM2 Play D in the first round, then play GRIM2. C

cc
cc

cc cd, dd, dd

cd, dd, dd

cd, dd, dd

ccD C D

DGRIM3 Play D in the first round, then play GRIM3. C

cc

cc

cc

cc

cd, dd, dd

cd, dd, dd

cd, dd, dd

cd, dd, dd

ccD C C D

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C and D
indicate whether the automaton prescribes cooperation or defection in the state. Arrows represent deterministic state
transitions. The labels indicate the information profiles of the previous periods which trigger the transitions. An unlabeled
arrows indicates an unconditional transition that occurs independent of the observed profile.
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Table C5: Behavior Strategies 21-24

Acronym Description Automaton

SGRIM
Play C if both players played C, and D if both
players played D. If one player played D and the
other C, play C with probability 0.35.

C dd

cc dd

cd, dc cd, dc

cc

cc

cd, dc

dd

0.35

D

M1BF

Play C if both players played C, and D if both
players played D. If the own action was C and
the other player played D, play C with probability
0.75. If the own action was D and the other player
played C, play C with probability 0.5.

C

dd

cd dd

dccc

cc cd

dddc
cc

cd dccc

cd

dc

dd

0.5

0.75

D

T1BFas

Play C if you played C and the signal was c, and
D if you played D and the signal was d. If the
own action was C and the signal was d, play C
with probability 0.5. If the own action was D and
the signal was c, play C with probability 1.

C

dd

cd dd

dccc

cc cd

dddc
cc

cd dccc

cd

dc

dd

C

0.5

D

RAND Always randomize between C and D with σ = 0.5. 0.5

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C and D
indicate whether the automaton prescribes cooperation or defection in the state. Numbers in indicate the probability of
cooperation in the current state of the automaton. Arrows represent deterministic state transitions. The labels indicate the
information profiles of the previous periods which trigger the transitions. An unlabeled arrows indicates an unconditional
transition that occurs independent of the observed profile.
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Appendix D Experimental Instructions and Quiz

[Below are the instructions for the perfect-monitoring treatment with repeated communication.

Instructions for the other treatments were very similar and are therefore omitted here. They

can be obtained from the authors upon request, along with the original instructions in

German.]

Overview

Welcome to this experiment. We ask you not to speak with other participants during the experiment and to

switch off your mobile phones and other mobile electronic devices.

For your participation in today’s session, you will be paid in cash at the end of the experiment. The amount

of the payout depends in part on your decisions, partly on the decisions of other participants and partly on

chance. It is therefore important that you carefully read and understand the instructions before the start of

the experiment.

In this experiment, every interaction between participants goes through the computers you are sitting in front

of. You will interact with each other anonymously. Neither your name nor the names of other participants

will be made public, either today or in future written evaluations.

Today’s session includes several rounds. Your payout amount is the sum of the earned points in all rounds,

converted into euros. The conversion of points into euros is done as follows. Each point is worth 2 cents, so

the following applies: 50 points = EUR 1.00.

All participants will be paid privately, so that other participants will not be able to see how much they have

earned.

Experiment

Interactions and Matching

This experiment comprises 7 identical interactions, each consisting of a randomly determined number of rounds.

At the very beginning, before the first interaction, you are randomly placed in a group with other participants.

In each of the 7 interactions, you will interact with a different participant in your group.

In concrete terms, this is how it works: Before the first interaction, you are assigned to a person from your

group with whom you interact in all rounds of the first interaction. In the second interaction, you are then

assigned to a new person from your group, with whom you interact in all rounds of the second interaction,

etc. In this way, you interact with each person assigned to your group in exactly one interaction, but in all
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rounds of that interaction.

Length of an Interaction

The length of an interaction is determined randomly. After each round there is an 80% chance that there will

be at least one more round.

You can imagine this as follows. A 100-sided dice is rolled after each round. If the roll is 20 or less, there is no

further round. If the roll is a different number (21-100), the interaction continues. Note that the probability

of another round does not depend on the round you are in. The probability of a third round when you are in

round 2 is 80%, as is the probability of a tenth round when you are in round 9.

As soon as chance decides after a round that there is no further round in the interaction, the interaction is

finished and you are assigned to a new person for the next interaction. After the seventh interaction, the

experiment ends.

Interactions and Sequence of Events in a Round

Before each round of interaction, you can chat with the other person on your screen. The chat takes place in

an anonymous chat window. In order to protect your anonymity, it is important that you do not provide any

information about yourself or your seat number during communication. Otherwise we reserve the right not to

pay you any money in the end. The entire chat content is displayed during the interaction and can be read

again.

After the first chat the first round begins.

In each round, you select one of two possible options, A or B. The other person also selects one of two possible

options, A or B.

There is a 90% probability that the option you have chosen will be correctly communicated to the other

person. There is a 10% probability that the option you have not selected will be transmitted. What the other

person receives is what we call the other person’s signal. The same applies to the other person’s option and

your signal. For example, if the other person chooses option A, you receive Signal A with 90% probability

and with 10% probability you get Signal B. Assuming you choose Option B, the other person receives Signal

A with 10% probability and Signal B with 90% probability.

Your round income depends on your selected option and the signal received. Likewise, the payout of the

other person depends on their chosen option and the signal they receive.

Once you and the other person have chosen an option, chance decides which signals are transmitted and

what round earnings result from them with the probabilities given above.
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Figure D1: Round Income [Figure 1 from Instructions]

Your income with signal
Expected income if the other person

chooses option A chooses option B

Your options

The four cells on the right in Figure 1 show the expected earnings depending on your option choice and the

option choice of the other person. For example, if you select option B and the other person selects option

A, you receive Signal A with 90% probability and Signal B with 10%. Therefore you will receive 37 points

with 90% probability and 17 points with 10% probability, that is, your expected earnings in this case are:

0.9*37+0.1*17=35 points.

Figure D2: Part of Feedback Screen (Example) [Figure 2 from Instructions]

Round Income

Your Choice:

Your Signal:

Choice of oth. person:

Signal of oth. person:

Your Points in
this Round:

At the end of the round, you will receive feedback on your chosen option, the signal received, the other

person’s choice of an option, the signal received by the other person, and your own round earnings (see Figure

2).

All possible following rounds are identical in sequence. The course of the current interaction, that is, the

feedback that you received at the end of all previous rounds, is shown in a table in every round.
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End and Payoff

As soon as chance ends the seventh interaction, the experiment is over.

At the end of the experiment, the points from all rounds are converted into euros and paid out privately.

The last screen of the last round of the seventh interaction shows you how much you have earned in euros.

Questions?

Take your time to go over the instructions again. If you have any questions, please raise your hand. An

experimenter will then come to your place.

If you think you have understood everything well, you can start the quiz on your screen. The quiz is only to

ensure that everyone has understood the instructions well. The answers do not affect your payout.
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Quiz [on screen]

[The quiz was the same in all nine treatments. The correct answers appeared on the next screen.]

1. How many interactions are there?

[1,7, it is random]

2. What is the probability that there is a first round of an interaction?

[20%, 80%, 100%]

3. What is the probability that there will be a second round in an interaction when you are

currently in the first?

[20%, 80%, 100%]

4. What is the probability that there will be a third round in an interaction when you are

currently in the second?

[20%, 80%, 100%]

5. What is the probability that there will be a third round in an interaction when you are

currently in the first?

[64%, 80%, 100%]

6. You choose Option B and the other person cooses Option B.

(a) What is the probability that you receive Signal A?

[10%, 90%, 100%]

(b) What is the probability that the other person receives Signal B?

[10%, 90%, 100%]

(c) How high is your payoff in case you receive Signal A?

[19, 35, 37]

(d) How high is the expected payoff of the other person?

[19, 35, 37]
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